北海道大学大学院 農学研究院・農学院, 北海道大学 農学部

研究業績

  • HOME »
  • 研究業績

2021

  1. Tsugami Y, Wakasa H, Kawahara M, Nishimura T, Kobayashi K (2021). Lipopolysaccharide and lipoteichoic acid influence milk production ability via different early responses in bovine mammary epithelial cells. Experimental cell Research, 15; 400(2):112472.
    https://pubmed.ncbi.nlm.nih.gov/33450209/
  2. Tsugami Y, Wakasa H, Kawahara M, Watanabe A, Suzuki T, Nishimura T, Kobayashi K (2021). Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell and Tissue Research, 384(2):435-448. https://pubmed.ncbi.nlm.nih.gov/33433684/
  3. Suzuki T, Mori A, Maeno T, Arimatsu R, Ichimura E, Nishi Y, Hisaeda K, Yamaya Y, Kobayashi K, Nakamura M, Tatsumi R, Ojima K, Nishimura T (2021). Abundant Synthesis of Netrin-1 in Satellite Cell-Derived Myoblasts Isolated from EDL Rather Than Soleus Muscle Regulates Fast-Type Myotube Formation. International journal of molecular sciences, 22(9):4499. https://pubmed.ncbi.nlm.nih.gov/33925862/

2020

  1. Suzuki N, Tsugami Y, Wakasa H, Suzuki T, Nishimura T, Kobayashi K (2020). Menthol from Mentha piperita suppresses the milk production of lactating mammary epithelial cells in vivo and in vitro. Molecular Nutrition and Food Research,  14: e2000853.
    https://pubmed.ncbi.nlm.nih.gov/33188562/
  2. Kobayashi K, Tsugami Y, Suzuki N, Suzuki T, Nishimura T (2020). Suppressive effects of curcumin on milk production without inflammatory responses in lactating mammary epithelial cells. Phytomedicine, 1;80:153360.
    https://pubmed.ncbi.nlm.nih.gov/33038867/
  3. Yamamura S, Goda N, Akizawa H, Kohri N, Balboula ZA, Kobayashi K, Bai H, Takahashi M, Kawahara M (2020). Yes-associated protein 1 translocation under mechanical forces exerted through actin cytoskeleton organization in trophectoderm cells. Developmental Biology, 15;468:14-25.
    https://pubmed.ncbi.nlm.nih.gov/32946790/
  4. Tsutsui S, Wakasa H, Tsugami Y, Suzuki T, Nishimura T, Kobayashi K (2020). Distinct expression patterns of fibrillar collagen types I, III, and V in association with mammary gland remodeling during pregnancy, lactation and weaning. J Mammary Gland Biol Neoplasia, in press.https://pubmed.ncbi.nlm.nih.gov/32915396/
  5. Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K (2020). Regulatory effects of soy isoflavones and the metabolite in milk production via different ways in mice.Journal of Agricultural and Food Chemistry, 68:5847-5853.
    https://pubmed.ncbi.nlm.nih.gov/32379443/
  6. Tsugami Y, Suzuki N, Kawahara M, Suzuki T, Nishimura T, Kobayashi K (2020). Establishment of an in vitro culture model to study milk production and the blood-milk barrier with bovine mammary epithelial cells. Animal Science Journal, in press.
    doi: 10.1111/asj.13355
  7. Ikebuchi R, Fujimoto M, Moriya T, Kusumoto Y, Kobayashi K, Tomura M, (2020). T cells are the main population in mouse breast milk and express similar profiles of tight junction proteins as those in mammary alveolar epithelial cells. Journal of Reproductive Immunology, 140:103137.
    https://pubmed.ncbi.nlm.nih.gov/32402923/
  8. Kumai A, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K (2020). Adverse Effects of Coumestrol and Genistein on Mammary Morphogenesis and Future Milk Production Ability of Mammary Epithelial Cells. Advanced Biosystems, 1900187
    doi: 10.1002/adbi.20190018
  9. Kaihoko Y, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K(2020). Distinct expression patterns of aquaporin 3 and 5 in ductal and alveolar epithelial cells in mouse mammary glands before and after parturition. Cell and Tissue Research, 380:513-526.
    https://www.ncbi.nlm.nih.gov/pubmed/31953689
  10. Kobayashi K, Tsugami Y, Suzuki N, Suzuki T, Nishimura T (2020). Nicotine directly affects milk production in lactating mammary epithelial cells concurrently with inactivation of STAT5 and glucocorticoid receptor in vitro. Toxicology In Vitro, 63: 104741.
    https://www.ncbi.nlm.nih.gov/pubmed/31783125

 

2019

  1. Seo K, Suzuki T, Kobayashi K, Nishimura T. (2019). Adipocytes suppress differentiation of muscle cells in a co-culture system. Animal Science Journal, 90(3); 423-434. doi:10.1111/asj.13145
    https://onlinelibrary.wiley.com/doi/full/10.1111/asj.13145

 

2018

  1. Wakamatsu J, Mofassara Akter, Honma F, Hayakawa T, Kumura H, Nishimura T. (2018).Optimal pH of zinc protoporphyrin IX formation in porcine muscles: Effects of muscle fiber type and myoglobin content.LWT – Food Science and Technology, 101 (2019) 599–606.
    doi:10.1016/j.lwt.2018.11.040
    https://www.sciencedirect.com/science/article/pii/S0023643818309915
  2. Nakayama Y, Oshima N, Tatsumi E, Ichii O, Nishimura T.(2018). iBTA-induced bovine Biosheet for repair of abdominal wall defects in a beagle model: proof of concept.Hernia, 22: 1033–1039.
    doi:10.1007/s10029-018-1799-8
    https://link.springer.com/content/pdf/10.1007%2Fs10029-018-1799-8.pdf
  3. Ojima K, Ichimura E, Suzuki T, Oe M, Muroya S, Nishimura T. (2018). HSP90 modulates the myosin replacement rate in myofibrils. American Journal of Physiology. Cell Physiology, 315(1); C104-C114.
    doi: 10.1152/ajpcell.00245.2017
    https://www.physiology.org/doi/full/10.1152/ajpcell.00245.2017
  4. Gotoh T, Nishimura T, Kuchida K, Mannen H. (2018). The Japanese Wagyu beef industry: current situation and future prospects – A review. Asian-Australasian Journal of Animal Sciences, 31(7); 933-950. doi: 10.5713/ajas.18.0333
    https://www.ajas.info/journal/view.php?doi=10.5713/ajas.18.0333
  5. Kobayashi K, Tsugami Y, Matsunaga K, Suzuki T,  Nishimura T.(2018). Moderate High Temperature Condition Induces the Lactation Capacity of Mammary Epithelial Cells Through Control of STAT3 and STAT5 Signaling. Journal of Mammary Gland Biology and Neoplasia, 23(1-2); 75-88.doi:10.1007/s10911-018-9393-3
    https://www.ncbi.nlm.nih.gov/pubmed/29633073
  6. Akizawa H, Kobayashi K, Bai H, Takahashi M, Kagawa S, Nagatomo H, Kawahara M. (2018). Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Reproduction, 155(6); 563-571. doi:10.1530/REP-18-0043
    https://www.ncbi.nlm.nih.gov/pubmed/29661794
  7. Terazawa T, Nishimura T, Mitani T, Ichii O, Ikea T, Kosenda K, Tatsumi E, Nakayama Y.(2018). Wall thickness control in biotubes prepared by using type C mold. Journal of Artificial Organs,
    21(3):387-391. doi:10.1007/s10047-018-1035-4
    https://www.ncbi.nlm.nih.gov/pubmed/29603026
  8. Matsunaga K, Tsugami Y, Kumai A, Suzuki T, Nishimura T, Kobayashi K (2018). IL-1β directly inhibits milk lipid production in lactating mammary epithelial cells concurrently with enlargement of cytoplasmic lipid droplets. Experimental Cell Research, 370:365-372.
    https://www.ncbi.nlm.nih.gov/pubmed/29966663
  9. Shinagawa F, Takata S, Toba Y, Ikuta M, Hioki S, Suzuki T, Nishimura T, Nakamura R, Kobayashi K (2018). Potential of Gouda cheese whey to improve epidermal conditions by regulating proliferation and differentiation of keratinocytes. International Dairy Journal, 87:100-106. https://doi.org/10.1016/j.idairyj.2018.07.016

2017

  1. Tatsumi R, Suzuki T, Do M-KQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE.(2017). Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells, 35(7), 1815-1834
    doi:10.1002/stem.2639
    https://www.ncbi.nlm.nih.gov/pubmed/28480592
  2. Ojima K, Ichimura E, Yasukawa Y, Oe M, Muroya S, Suzuki T,  Wakamatsu JI, Nishimura T.(2017). Myosin substitution rate is affected by the amount of cytosolic myosin in cultured muscle cells. Animal Science Journal, 88(11):1788-1793. doi:10.1111/asj.12826
    https://www.ncbi.nlm.nih.gov/pubmed/28631391
  3. Sasaki K, Ooi M, Nagura N, Motoyama M, Narita T, Oe M, Nakajima I, Hagi T, Ojima K, Kobayashi M, Nomura M, Muroya S, Hayashi T, Akama K, Fujikawa A, Hokiyama H, Kobayashi K, Nishimura T.(2017). Classification and characterization of Japanese consumers’ beef preferences by external preference mapping. Journal of The Science of Food and Agriculture, 97, 3453–3462. 
    https://www.ncbi.nlm.nih.gov/pubmed/15542475
  4. Kobayashi K, Oyama S, Kuki C, Tsugami Y, Matsunaga K, Suzuki T, Nishimura T. (2017). Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in b-casein secretion pathway in lactating mammary epithelial cells. Molecular and Cellular Endocrinology, 440 16-24. doi:10.1016/j.mce.2016.11.006
    https://www.ncbi.nlm.nih.gov/pubmed/27836773
  5. Tsugami Y, Matsunaga K, Suzuki T, Nishimura TKobayashi K.(2017). Phytoestrogens weaken the blood-milk barrier in lactating mammary epithelial cells by affecting tight junctions and cell viability. Journal of Agricultural and Food Chemistry, 65, 11118-11124. doi:10.1021/acs.jafc.7b04786
    https://www.ncbi.nlm.nih.gov/pubmed/29189005
  6. Tsugami Y, Matsunaga K, Suzuki T, Nishimura TKobayashi K.(2017). Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/ STAT5 signaling. Molecular Nutrition and Food Research, 61, 10, 1700156.doi:10.1002/mnfr.201700156
    https://www.ncbi.nlm.nih.gov/pubmed/28605125
  7. Baumgartner HK, Rudolph MC, Ramanathan P, Burns V, Daniel T, Webb P, Stein T, Kobayashi K, Neville MC.(2017). Developmental expression of claudins in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 22, 141-157. doi:10.1007/s10911-017-9379-6
    https://www.ncbi.nlm.nih.gov/pubmed/28455726

 

2016

  1. Ojima K, Oe M, Nakajima I, Muroya S, Nishimura T.(2016). Dynamics of protein secretion during adipocyte differentiation. FEBS Open Bio, 6(8), 816-826. doi:10.1002/2211-5463.12091
    https://www.ncbi.nlm.nih.gov/pubmed/27516960
  2. Ezoe M, Wakamatsu J, Takahata Y, Hasegawa T, Morimatsu F, Nishimura T. (2016). Diet-Induced Thermogenesis and Expression Levels of Thyroid Hormone Target Genes and Their Products in Rats Differ between Meat Proteins. Journal of Nutritional Science and Vitaminology, 62(2) , 93-100.doi:10.3177/jnsv.62.93
    https://www.ncbi.nlm.nih.gov/pubmed/27264093
  3. Kobayashi K, Tsugami Y, Matsunaga K, Oyama S, Kuki T, Kumura H. (2016). Prolactin and glucocorticoid signalling induces lactation-specific tight junctions concurrent with β-casein expression in mammary epithelial cells. Biochimica et Biophysica Acta – Molecular and Cell Research, 1863, 2006-2016.doi:10.1016/j.bbamcr.2016.04.023
    http://www.ncbi.nlm.nih.gov/pubmed/27130254
  4. Sasaki K, Tanaka A, Nagatomo H, Ogawa H, Kobayashi K, Takahashi M, and Kawahara M. (2016). Characterization of Toll-Like Receptor 9 expression during mouse preimplantation development. Journal of Genital System & Disorders, 5, 1-5. doi:10.4172/2325-9728.1000145
  5. Kobayashi K, Kuki T, Oyama S, Kumura H. (2016). Pro-inflammatory cytokine TNF-α is a key inhibitory factor for lactose synthesis pathway in lactating mammary epithelial cells. Experimental Cell Research, 340, 295-304.doi:10.1016/j.yexcr.2015.10.030
    http://www.ncbi.nlm.nih.gov/pubmed/26518119

 

2015

  1. Ojima K, Ichimura E, Yasukawa Y, Wakamatsu J, Nishimura T.(2015). Dynamics of myosin replacement in skeletal muscle cells. American Journal of Physiology Cell Physiology, 2015, 309, C669-C679. doi:10.1152/ajpcell.00170.2015
    https://www.ncbi.nlm.nih.gov/pubmed/26377314
  2. Nishimura T. (2015). Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Science, 109, 48-55.doi:10.1016/j.meatsci.2015.05.015
    https://www.ncbi.nlm.nih.gov/pubmed/26141816
  3. Mahdy MA, Lei HY, Wakamatsu J, Hosaka YZ, Nishimura T. (2015). Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Annals of Anatomy, 202, 18-27.DOI:10.1016/j.aanat.2015.07.002
    https://www.ncbi.nlm.nih.gov/pubmed/26340019
  4. Kloepper JE, Baris OR, Reuter K, Kobayashi K, Weiland D, Vidali S, Paus R. (2015). Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions. The Journal of Investigative Dermatology, 135(3) 679-689.doi:10.1038/jid.2014.475
    https://www.ncbi.nlm.nih.gov/pubmed/25371971
  5. Uejyo T, Oyama S, Kuki T, Kumura H, Kobayashi K. (2015). Early down-regulation of milk production after weaning by pup removal and prior to involution in mouse mammary glands. Cell and Tissue Research, 359(2) 643-635. doi:10.1007/s00441-014-2013-7
    https://www.ncbi.nlm.nih.gov/pubmed/25315033
  6. Hayakawa T, Yoshida Y, Yasui M, Ito T, Wakamatsu J, Hattori A, Nishimura T. (2015). Role of Heavy Meromyosin in Heat-Induced Gelation in Low Ionic Strength Solution Containing L-Histidine. Journal of Food Science, 80(8), C1641-1645. doi:10.1111/1750-3841.12958
    https://www.ncbi.nlm.nih.gov/pubmed/26148000
  7. Pethick D.W, Thompson J, Polkinghorne R, Bonny S, Tarr G, Treford P, Sinclair D, Frette F, Wierzbicki J, Crowley M, Gardner G, Allen P, Nishimura T, McGilchrist P, Farmer L, Meng Q, Scollan N, Duhem K, Hocquette J.F. (2015). Prédiction de la qualité de la viande de ruminants (Beef and Lamb carcass grading to underpin consumer satisfaction), Viandes & Produits Carnés, 1-16.
PAGETOP