1	Robert S. de Moya
2	Department of Entomology
3	University of Illinois Urbana-Champaign
4	505 S. Goodwin Ave.
5	Urbana, IL 61801
6	Email: <u>Rdemoya2@illinois.edu</u>
7	
8	Phylogenomics of parasitic and non-parasitic lice (Insecta: Psocodea): Combining sequence data
9	and Exploring compositional bias solutions in Next Generation Datasets
10	Robert S. de Moya ^{1,2} , Kazunori Yoshizawa ³ , Kimberly K.O. Walden ¹ , Andrew D. Sweet ⁴ ,
11	Christopher H. Dietrich ² , Kevin P. Johnson ²
12	¹ Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave.,
13	Urbana, IL 61801, USA
14	² Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL
15	61820, USA
16	³ Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
17	⁴ Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907,
18	USA

20 Abstract

21

22 The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) 23 and non-parasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to 24 affect phylogenetic inference. Divergent morphology between parasitic and non-parasitic 25 26 members has also obscured the origins of parasitism within the order. We conducted a 27 phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome 28 sequencing to obtain a data set of 2.370 orthologous genes. All phylogenomic analyses, 29 including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us 30 31 to propose a stable ordinal level classification scheme that retains significant taxonomic names 32 present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism 33 34 that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to 35 Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling 36 37 methods demonstrate that base compositional biases can also have an effect on quartet-based methods. 38

39

40 Keywords:

41 Quartet sampling, Psocoptera, Phthiraptera, Illumina, Recoding methods

42

Phylogenomics of Psocodea

43 Introduction

44

45	The era of phylogenomic analysis has provided access to new data types originating from
46	different genomic regions (e.g. ultra-conserved elements (UCE) and single-copy protein-coding
47	orthologs) (Jarvis et al. 2014; Prum et al. 2015) or from post transcriptional processes (i.e.
48	transcriptomes) (Misof et al. 2014; Johnson et al. 2018a). Availability of certain data types may
49	be contingent on the quality or age of a specimen. For example, RNA degrades quickly, and
50	transcriptome-based analyses are not typically feasible for old or fixed specimens (Houseley and
51	Tollervey 2009; Bossert et al. 2019). Transcriptomes are obtainable for fresh specimens
52	preserved in an appropriate buffer (e.g. RNA-later TM) that inhibits the activity of RNases which
53	degrade RNA (Houseley and Tollervey 2009). Transcriptomes correspond to coding gene
54	sequences and are free of non-coding introns, and thus align well. Alternatively, most next
55	generation methods that produce whole genome sequences include a fragmentation step prior to
56	library construction (Alkan et al. 2011) that may mimic degradation processes that occur in
57	specimens that are dry or old (Bossert et al. 2019). DNA-based genome sequencing is not limited
58	by the amount of RNA present in a cell and can produce many reads across the genome (Johnson
59	2019). However, raw genomic DNA sequence data contain intron and non-coding data (Jarvis et
60	al. 2014), but these can be excised prior or masked following alignment with transcriptome data.
61	High volume sequencing technologies have often been described and implemented in
62	phylogenomic studies; however, approaches to combine sequences derived from different next
63	generation sequencing technologies have been less developed. A recent phylogenomic analysis
64	of Apidae (bees) successfully combined transcriptome, genome, and UCE data to produce a

65	robust topology (Bossert et al. 2019). However, this is one of few studies to combine
66	transcriptome and partial genome data in a single phylogenomic analysis.
67	Phylogenomic analyses have helped resolve many contentious relationships, but have
68	also accentuated the need to test for compositional (and other) biases in molecular data sets that
69	may be amplified by the inclusion of millions of base pairs of nucleotides and can lead to strong
70	support for misleading hypotheses (Romiguier et al. 2016; Bossert et al. 2017, 2019; Simion et
71	al. 2017; Laumer et al. 2018; Simon et al. 2018; Vasilikopoulos et al. 2019). Before the
72	widespread use of phylogenomic analysis, Sanger sequencing-based phylogenetics sought to
73	optimize the topology by testing hierarchical models of evolution (Posada and Crandall 1998).
74	Weaknesses of these models can be exposed (Duchêne et al. 2017), due to large scale
75	compositional biases that exist in codon positions found across thousands of loci, which violate
76	model assumptions of stationarity (Simion et al. 2017; Laumer et al. 2018). These biases can
77	create phylogenetic artifacts that appear well supported given traditional clade support values
78	(i.e. bootstrap support) but is actually misleading because the large amount of data simply
79	converges upon a stable topology due to underlying weaknesses in model assumptions.
80	Base compositional biases (%GC) have long been known to influence the results of
81	phylogenetic analyses (Galtier and Gouy 1995; Jermiin et al. 2004; Bossert et al. 2017) and
82	several methods for reducing the influence of such biases on phylogenetic inference have been
83	proposed (Jermiin et al. 2004; Sheffield et al. 2009; Regier et al. 2010; Ishikawa et al. 2012;
84	Zwick et al. 2012; Simmons 2017). However, most methods that incorporate time-heterogeneous
85	approaches (Philippe et al. 2011; Roure and Philippe 2011) are extremely computationally
86	intensive and would be difficult to apply to large phylogenomic data sets, although they have
87	been applied in mitochondrial phylogenomics with success (Sheffield et al. 2009). Alternative

Phylogenomics of Psocodea

88 methods include recoding techniques (Simmons 2017) which use IUPAC ambiguity codes to mask variable codon positions that code for a silent mutation, such as RY recoding (Ishikawa et 89 90 al. 2012) and degeneracy methods (Regier et al. 2010; Zwick et al. 2012). Another solution is to 91 discard possible saturated data, for example removal of the third codon positions from an 92 alignment (Breinholt and Kawahara 2013) or even the first and third codon postitions (Misof et al. 2014). These two methods are effective for concatenated datasets; however, coalescent 93 94 analyses may also be influenced by compositional biases in individual genes (Romiguier et al. 2016; Bossert et al. 2017, 2019). A further solution is to analyze amino acid sequences, although 95 96 it is possible that underlying base compositional biases can result in amino acid biases as well 97 (Foster et al. 1997). In addition, molecular models for the evolution of amino acids are much more computationally intensive and may not be feasible for analysis of large genomic data sets, 98 99 because a twenty-one amino acid model (two coding strategies for serine) (Zwick et al. 2012) is 100 much more complex relative to nucleotide models based on four bases (Posada and Crandall 101 1998). Here we explore some of these issues using a combined genome and transcriptome data 102 set for a group of insects (Psocodea) known to have strong variation in base compositional biases 103 across taxa (Johnson et al. 2003; Yoshizawa and Johnson 2013).

The insect order Psocodea encompasses the two historically recognized groups Psocoptera (free-living bark lice) and Phthiraptera (parasitic lice) that were once considered separate orders. Members of Psocodea have an extensive fossil record that extends into the Lower Cretaceous (Mockford et al. 2013) and molecular divergence time estimates place their origin in the Paleozoic (~404 Ma) (Misof et al. 2014; Johnson et al. 2018a; Yoshizawa et al. 2019). The order also encompasses species with a range of feeding preferences, from detritus, plant material (i.e. pollen, decaying leaves), and microflora (i.e. cyanobacteria films, fungal, and

111	lichen) in non-parasitic members (Broadhead and Wapshere 1966; New 1970, 1987; Broadhead
112	and Richards 1982); to obligate ectoparasitism on birds and mammals (i.e. skin debris, feathers,
113	blood/skin secretions) (Price et al. 2003; Clayton et al. 2015). The ecological diversity and age of
114	the group have likely contributed to large-scale compositional biases that have previously been
115	detected between parasitic and non-parasitic members (Johnson et al. 2003; Yoshizawa and
116	Johnson 2013; Johnson et al. 2018a). These known compositional biases provide an opportunity
117	to examine the effects such biases may have on phylogenomic analyses. Other groups of
118	organisms are also known to show such biases (Cox et al. 2014; Romiguier et al. 2016; Bossert
119	et al. 2017; Skinner et al. 2020), thus understanding the potential effects and methods to account
120	for such biases will have relevance to many phylogenomic studies.
121	The order Psocodea also represents an ideal taxon for examining the effect of combining
122	whole genome and transcriptome derived sequence data. Parasitic lice are known to have
123	reduced genome sizes (Pittendrigh et al. 2006; Johnston et al. 2007; Kirkness et al. 2010) and are
124	minute insects which typically produce small amounts of RNA. Pediculus humanus has one of
125	the smallest insect genomes recorded, at 108 Mbp (Kirkness at al. 2010), and coverage estimates
126	from Illumina genome sequencing indicate small genome sizes may be a general feature of
127	Psocodea ($100 - 400$ Mbp, unpublished). While it has been possible in the past to sequence
128	transcriptome-based data for parasitic Phthiraptera based on pooling many individuals (Johnson
129	et al. 2018b), data is more readily obtained by whole genome sequencing (Allen et al. 2017;
130	Boyd et al. 2017; Sweet et al. 2018). The reduced genome size of parasitic lice makes it possible
131	to produce high quality assemblies from multiplexed samples on a single sequencing lane with
132	whole genome-based sequencing methods (Allen et al. 2017; Boyd et al. 2017; Sweet et al. 2018;
133	Johnson 2019). In contrast, non-parasitic Psocodea (bark-lice) are typically larger in body

Phylogenomics of Psocodea

volume and produce higher copy transcript sequences (Johnson et al. 2018a). Less total sequence
data is needed for transcriptome sequencing, thus is more economical than whole genome
sequencing. (Johnson 2019). Therefore, there is a cost advantage to combining transcriptome and
whole genome data in phylogenomic analyses that combine parasitic and non-parasitic Psocodea.
Our study is the first to test the utility of combining these different data types in a study of
Psocodea phylogeny, and this general approach should be applicable to many groups of
organisms.

Although the monophyly of the lineage comprising both Phthiraptera and Psocoptera is 141 142 well established based on morphological criteria (Lyal 1985; Yoshizawa and Lienhard 2010), 143 inconsistent taxonomic treatment of the two groups continues (Emeljanov et al. 2001; Scholtz 2016; Durden 2019; Wang et al. 2019). Psocoptera traditionally consists of three recognized 144 145 suborders (Trogiomorpha, Psocomorpha, and Troctomorpha) (Lienhard and Smithers 2002) and 146 Phthiraptera has four previously recognized suborders (Amblycera, Ischnocera, 147 Rhynchophthirina, and Anoplura) (Price et al. 2003). Based on molecular and morphological 148 evidence, Phthiraptera is derived from within the Troctomorpha (Lyal 1985; Johnson et al. 2004; Yoshizawa and Lienhard 2010; Johnson et al. 2018a), but inconsistent use of the subordinal 149 150 ranks that divide the traditional orders Psocoptera and Phthiraptera can be found in modern 151 literature (Emeljanov et al. 2001; Scholtz 2016). Adding to the confusion, the origin of 152 parasitism remains in question (Yoshizawa and Johnson 2010) because phylogenetic analyses of 153 a ribosomal gene suggested that Phthiraptera could be polyphyletic (Johnson et al. 2004). 154 To explore the phylogenetic relationships within Psocodea, we assembled a large 155 phylogenomic data set (2,370 orthologous genes) derived from whole genome and transcriptome 156 sequencing using a customized pipeline. Using this dataset, comprising more than two million

157 base pairs of nucleotide data, we examined the effects of large base compositional biases on

158 phylogenetic inference. We used the results from our assessment of the influence of base

159 composition on tree topology to conduct a dating analysis accounting for these biases to explore

160 the origins of parasitism in this group.

161

- 162 Materials & Methods
- 163
- 164 *Taxonomic Sampling*

165

Sampling was aimed at resolving deep level relationships between historically recognized 166 orders or suborders that comprise the insect order Psocodea. One focus of the sampling was 167 168 resolving whether or not the parasitic lice (Phthiraptera) form a monophyletic assemblage 169 (Johnson et al. 2004; Yoshizawa and Johnson 2010). Sampling included a broad array of 170 parasitic species and the closest non-parasitic members known as the Nanopsocetae (Mockford 171 1993). In total 112 individuals were sampled, encompassing all currently recognized suborders and infraorders (Table 1). Prior studies established that Trogiomorpha is monophyletic and is the 172 173 sister taxon of the remainder of Psocodea (Johnson et al. 2004; Yoshizawa et al. 2006), so we 174 used this suborder as the root. This was done because the sister taxon of Psocodea is currently unclear (Misof et al. 2014; Johnson et al. 2018a), thus we avoided outgroups that are highly 175 176 divergent from the ingroup to circumvent alignment difficulties and potential long branch attraction artifacts. 177

178

179 Next Generation Sequencing and Orthology Inference

Phylogenomics of Psocodea

180

181 Given the inherent difficulties of obtaining large quantities of freshly preserved tiny 182 insects, such as lice, we developed a pipeline to use whole genome sequencing to obtain 183 orthologs belonging to a set included in a previous dataset derived from transcriptome data 184 (Johnson et al. 2018a). In some cases, both genome and transcriptome sequences were available 185 for the same species. This allowed us to verify that these two data types placed respective species 186 in the same phylogenetic position.

187 Whole genome data were obtained following genomic DNA extraction procedures and 188 using Illumina sequencing technologies. Specimens were stored in 95% ethanol at -80 °C. From 189 these, genomic DNA was extracted using a Qiagen DNAeasy extraction kit. The protocol was slightly modified with an extended 48-hour incubation step and use of 52 µl of elution buffer. 190 191 DNA was quantified using a Qubit 3.0 fluorometer. The extractions were then sonicated with a 192 Covaris M220 to an average size of 300-400 nt. A Kapa Library Preparation Kit (Kapa 193 Biosystems) was used to produce pair-end libraries. The libraries were then pooled into equimolar concentrations, quantified by qPCR. Each sample was sequenced for 151-161 cycles 194 on a Hiseq2500 (Illumina) with a TruSeq or HiSeq SBS sequencing rapid kit to produce 160 nt 195 196 reads. Fastq files were produced with Casava 1.8.2 or bcl2fastq v2.17.1.14. Adaptors and low-197 quality bases were removed using the FASTX Toolkit 0.0.14 (Gordon and Hannon 2010). All 198 sequencing took place at W.M. Keck Center at the University of Illinois, Urbana-Champaign. A 199 gene set of 2,395 protein-coding orthologs previously used for phylogenomic analyses of 200 hemipteroid insects was identified in the annotated genome of the human body louse, P. 201 humanus (Johnson et al. 2018a). This ortholog set was used as a reference in aTRAM 1.0 (Allen 202 et al. 2015) for local assembly of individual orthologs. This software uses tblastn searches to

identify reads matching the gene of interest and assembles them locally. Parameters for aTRAM 203 204 loci assembly were set to three iterations, fraction one, and the ABySS de novo assembler 205 (Simpson et al. 2009). Exon sequences assembled by aTRAM were then annotated and stitched 206 together if needed using an Exonerate-based (Slater and Birney 2005) pipeline (Allen et al. 207 2017). Transcriptome assemblies and inferred ortholog transcripts were previously published 208 (Table 1, Johnson et al. 2018a).

- 209
- Phylogenomic Analyses 210
- 211

Nucleotide sequences inferred as being orthologous from whole genome sequence data 212 were translated with Geneious 11.1.15 (Kearse et al. 2012). Translated whole genome and 213 214 transcriptome sequences were aligned with PASTA 1.8.0 by amino acid with memory usage 215 increased (2048 MB) and otherwise default parameters (Mirarab et al. 2014a). Nucleotide 216 sequences were retrieved using a custom python script to produce a final nucleotide alignment 217 based upon the amino acid alignments (Allen et al. 2017). Exonerate inserts ambiguous N's 218 between combined exon data, therefore excess N's were recoded to gaps before subsequent 219 masking. Multiple sequence gene alignments (MSAs) were masked on a nucleotide level with 220 trimAl (Capella-Gutiérrez et al. 2009) using a 40% gap threshold. Subsequently, MSAs that 221 included less than 50% of individuals were eliminated from subsequent analyses. Final 222 concatenated supermatrices of 2,370 gene sequences were produced with SequenceMatrix 1.8 223 (Vaidya et al. 2011).

Several phylogenetic analyses were performed using the final nucleotide supermatrix. 224 225 First, all nucleotide sites were analyzed in both partitioned and unpartitioned maximum

Phylogenomics of Psocodea

226	likelihood (ML) frameworks. Second, nucleotide sites were recoded using degeneracy coding
227	(Regier et al. 2010; Zwick et al. 2012) for phylogenetic analyses. Finally, nucleotide
228	supermatrices of 1) first and second codon positions and 2) second codon positions only were
229	produced from Geneious (Kearse et al. 2012). Partitioned analyses were performed on the all
230	nucleotide site and degeneracy recoded supermatrices. The optimal partitioning scheme was
231	determined with PartitionFinder 2.1.1 (Lanfear et al. 2017) and the implemented version of
232	RAxML 8.2.11 (Stamatakis 2014) with the following parameters: branch lengths linked, GTR +
233	G model, BIC model selection, rcluster search and max set to 100.
234	A series of ML phylogenetic analyses were performed on the resulting supermatrices
235	using ExaML 3.0.21 (updated: 6/4/2018) (Kozlov et al. 2015) and RAxML 8.2.11 (Stamatakis
236	2014). To save computation time, the ML hill-climbing algorithm was performed in ExaML with
237	a gamma model and 100 rapid bootstrap replicates were completed with RAxML using the GTR
238	+ G model with four GAMMA categories. For each bootstrap search, we tested for bootstrap
239	convergence using RAxML (Pattengale et al. 2009). In all cases, convergence was reached by 50
240	replicates, so the 100 bootstrap replicates are sufficient to provide a reliable estimator of
241	bootstrap proportions. To ensure that the most likely topology was obtained, eight separate tree
242	searches were performed with ExaML, each with different starting input trees derived from
243	RAxML (four parsimony based and four random start topologies). Bootstrap support (BS) for the
244	most likely topology obtained was then mapped using SumTrees 4.1.0 (Sukumaran and Holder
245	2015). These methods were used to analyze all supermatrices produced (all nucleotide sites,
246	degeneracy recoding, second codon positions only, and third codon positions removed).
247	To account for possible incongruence among genes due to incomplete lineage sorting or
248	other biases masked by concatenation, we also performed coalescent gene/species-tree analyses

249 using Astral 5.5.9 (Mirarab et al. 2014b; Mirarab and Warnow 2015). To infer individual gene trees as basis, each of the 2,370 MSAs were analyzed with RAxML using GTR + G and 100 250 251 rapid bootstrap replicates. Estimation of individual gene trees was performed using both 1) all 252 sites and 2) the degeneracy recoded data for each gene. Resulting bipartition files produced from 253 RAxML were used as in input for Astral analyses using default parameters with branch support calculated based on local posterior probability (LPP) (Sayyari and Mirarab 2016). 254 255 To evaluate support for conflicting topologies surrounding the phylogenetic position of 256 Amphientometae (see Results) due to potential biases in the concatenated dataset, quartet 257 sampling (Pease et al. 2018) and four cluster likelihood-mapping (quartet mapping, Strimmer 258 and Haeseler 1997) methods were employed. Four cluster likelihood-mapping was performed in 259 IQ-TREE 1.6.5 (Nguyen et al. 2015) testing all possible quartets, tree search skipped, GTR + G 260 model, and the following quartets defined: Trogiomorpha, Psocomorpha, Amphientometae, and 261 Nanopsocetae. Likelihood-mapping in IQ-TREE was performed on the nucleotide supermatrix with 1) all sites, 2) degeneracy recoding, 3) first and second positions only, and 4) second codon 262 263 positions only. Four cluster likelihood-mapping is not computationally feasible across all branches in large datasets. However, Pease et al. (2018) developed a quartet sampling method 264 265 which performs four cluster likelihood mapping across each node of the tree but using a random 266 subsample of all possible quartet combinations for that node. We used quartet sampling (Pease et 267 al. 2018) to evaluate support for conflicting topologies across all phylogenetic branches. Quartet sampling was performed using a log likelihood cutoff value of 2 and 200 replicates per branch on 268 269 the supermatrices for 1) all sites, 2) degeneracy recoding, 3) first and second positions only, and 270 4) second codon positions only. For ease of comparison, we provide a summary of all phylogenetic analyses performed (Table 2). 271

Phylogenomics of Psocodea

272	Guanine and cytosine content (GC%) were calculated per gene and codon position from
273	the masked MSAs with a custom python script (Allen et al. 2015, 2017). Following GC%
274	calculation, biases were visualized with box and whisker plots produced from RStudio 1.1.453
275	(RS Team 2015). Distribution of the GC% obtained for each individual gene were arranged in
276	ascending order per individual sampled based on the median GC% score obtained. This process
277	was repeated for first, second, and third codon positions.
278	Phylogenetic dating analyses using relaxed clock methods were performed with
279	MCMCTree in the PAML package under a correlated rates model (Yang 2007) on a topology
280	resulting from the ML searches of the partitioned degeneracy-coded dataset. A total of nine
281	internal calibration points with soft bounds were based on fossil evidence or previous dating
282	analyses (Wappler et al. 2004; Mockford et al. 2013; Johnson et al. 2018a,b). The internal
283	minimum age calibrations based on fossil evidence include the following: split of Atropetae (120
284	Ma), Psocomorpha (84 Ma), Caeciliusidae (33.9 Ma), Psocidae (33.9), Amphientometae (145
285	Ma), Liposcelididae + Phthiraptera (99 Ma), Menoponidae (44 Ma), Pedicinus + (Pthirus +
286	Pediculus) (20-25 Ma), and P. schaeffi + P. humanus (5-7 Ma) (Wappler et al. 2004; Mockford
287	et al. 2013; Johnson et al. 2018b). A maximum root age calibration for the split between
288	Trogiomorpha and the remainder of Psocodea was set to 328 Ma based on a previous dating
289	analysis (Johnson et al. 2018a) and was used to estimate the rate of substitution across the
290	topology. These described calibrations are not completely independent of calibrations previously
291	employed (Johnson et al. 2018a) but do include additional calibration points relevant to our
292	current taxon sampling. A reversible (GTR) model was implemented for the analysis. The
293	stationarity of two separate MCMC runs was visualized with Tracer 1.7.1 (Rambaut et al. 2018).
294	

295 Results

296

In total 2.370 genes were successfully aligned vielding a supermatrix of 2.945,181 bp 297 298 including all three codon positions. Transcriptome and whole genome sequences aligned well, 299 facilitating subsequent phylogenetic analyses. On average, each individual sampled had data 300 present for 95% of genes sampled (Table 1). 301 Topologies from maximum likelihood (ML) phylogenetic analyses of the concatenated 302 sequence dataset varied depending on the methods used for coding or removing nucleotides. 303 Much of this variation centered around the placement of the Amphientometae, an infraorder of 304 Troctomorpha comprising free-living taxa. Amphientometae was recovered as sister to the 305 suborder Psocomorpha with maximum support (100% BS), which contains only non-parasitic 306 taxa, when 1) all nucleotide sites or 2) first and second codon positions were analyzed. However, 307 under degeneracy recoding or analysis of second codon positions only, Amphientometae was recovered as sister to the remainder of the Troctomorpha with maximum support (100% BS), the 308 suborder into which it has traditionally been placed (Fig. 1). 309 310 Other than the placement of Amphientometae (i.e. monophyly of Troctomorpha), 311 relationships between the other major lineages within Psocodea were generally stable across 312 analyses. Psocomorpha was always recovered as monophyletic (100% BS). Within 313 Troctomorpha, Phthiraptera (parasitic lice) was always recovered as monophyletic regardless of 314 coding method (100% BS). The family Liposcelididae was also always recovered as 315 monophyletic and as the sister taxon of all parasitic lice (100% BS) as predicted from 316 morphology (Lyal 1985). Nanopsocetae (Pachytroctidae, Sphaeropsocidae, and Liposcelididae 317 plus Phthiraptera) was also always recovered as monophyletic (100% BS).

Phylogenomics of Psocodea

318	Among Phthiraptera, there was variation across analyses in the position of some mammal
319	lice (Anoplura, Trichodectidae, and Rhynchophthirina). In particular, Rhynchophthirina
320	(elephant lice) was sister to the chewing louse family Trichodectidae when all nucleotide sites
321	were analyzed (100% BS). However, under 1) degeneracy coding, 2) first and second codon
322	positions only, and 3) second codon positions only, Rhynchophthirina was recovered as sister to
323	Anoplura (sucking lice) (100% BS). Either of these placements resulted in paraphyly of what is
324	traditionally considered to be Ischnocera (one of the suborders of chewing lice): Trichodectidae
325	(parasitizing mammals) and Philopteridae (parasitizing mainly birds). Thus, our results also
326	support the existence of a larger mammal infesting clade comprising the Trichodectidae,
327	Rhynchophthirina, and Anoplura, which corroborates recent analyses (Johnson et al. 2018b; de
328	Moya et al. 2019; Song et al. 2019). The other traditional chewing louse suborder, Amblycera,
329	was recovered as monophyletic across all analyses and sister to the remainder of Phthiraptera.
330	Within the Psocomorpha (bark lice, all free-living), relationships between some
331	infraorders showed variation across analyses. In particular, the infraorder Homilopsocidea was
332	not supported as monophyletic across all ML analyses. Two families of Homilopsocidea
333	(Peripsocidae and Ectopsocidae) were most unstable in their placement and each of them
334	sometimes grouped with the Caeciliusetae depending on the method of analysis. However,
335	despite the poor support for the monophyly of the Homilopsocidea, the infraorder was
336	consistently recovered as sister to other members of the Caeciliusetae across ML analyses (100%
337	BS). The Psocetae and Epipsocetae were recovered as sister taxa across ML analyses (89-100%
338	BS) and together sister to Philotarsetae (100% BS). In general, support values are higher within
339	the Psocomorpha when all nucleotide sites are analyzed with a ML approach. The single sampled
340	member of the Archipsocetae (Archipsocidae) was always recovered as sister to the remainder of

the Psocomorpha (100% BS), as in prior morphological (Yoshizawa 2002) and molecular studies
(Yoshizawa and Johnson 2014).

343 Within the bark louse suborder Trogiomorpha, there was little variation in the results 344 among analyses. The infraorder Prionoglaridetae was recovered as paraphyletic across all 345 analyses, but this paraphyletic relationship was poorly supported in the degeneracy (6% BS) and 346 second codon position only (33% BS) analyses. However, a paraphyletic Prionoglaridetae was 347 supported with maximum bootstrap support (100% BS) when all nucleotide sites or first and 348 second codon positions were analyzed. The remainder of Trogiomorpha was embedded within 349 this paraphyletic assemblage of Prionoglaridetae. The infraorders Atropetae and Psyllipsocetae 350 were each recovered as monophyletic and sister lineages across all ML analyses (100% BS). Coalescent gene/species tree analyses (Astral) of individual gene trees across the 2,370 351 352 orthologous gene data set yielded similar branching patterns and measures of clade support 353 relative to concatenated ML analyses of the same data type. Most nodes received maximum support (1.0 LPP). As in the ML analyses of all sites for the concatenated data set, coalescent 354 355 analyses of gene trees from all nucleotide sites display maximum (1.0 LPP) support for a sister 356 relationship between Psocomorpha and Amphientometae (Supplemental Fig. 2). However, when 357 degeneracy recoded gene trees are analyzed (Supplemental Fig. 3), there is maximum support 358 (1.0 LPP) for a monophyletic Trocotomorpha including the Amphientometae. Relationships 359 among members of the Psocomorpha displayed some instability when degeneracy recoded data 360 was analyzed in a coalescent context. However, a similar topology relative to the ML analyses is 361 obtained for members of Psocomorpha when all sites are analyzed in a coalescent context. 362 Results of four-cluster likelihood-mapping show the distribution of discordant topologies 363 between different methods of analyses for the placement of the Amphientometae (Fig. 2). When

Phylogenomics of Psocodea

all nucleotide sites are analyzed 65.2% of quartets sampled favor a sister relationship between
the Amphientometae and Psocomorpha. Similarly, when first and second positions are analyzed
the support declines, but 50.2% of quartets still support a sister relationship between the
Amphientometae and Psocomorpha. In contrast, when the degeneracy recoded or second codon
positions only data are analyzed, 43.8% and 42.5% of quartets sampled respectively, support a
sister relationship between the Amphientometae and Nanopsocetae, while only 30.1% and 30.8%
support Amphientometae with Psocomorpha.

371 Ouartet sampling analyses are able to assess support from quartets (four cluster 372 likelihood-mapping) across all nodes in the tree. Using slightly different metrics, these analyses 373 estimate the frequency of discordant topologies across the resultant ML topology tested. When all nucleotide sites are analyzed, a weak majority of quartets support a sister Psocomorpha + 374 375 Amphientometae (0.23 QC) (Fig. 3). In contrast, when using the degeneracy recoded dataset, a 376 slight majority of quartets sampled support a monophyletic Troctomorpha, including the 377 Amphientometae (0.01 QC) (Fig. 4). Quartet sampling also provides an estimate of which nodes 378 are most stable given the data type and topology analyzed. For example, monophyly of the 379 parasitic louse clade that includes Philopteridae, Trichodectidae, Anoplura, and 380 Rhynchophthirina is supported by all quartets sampled across all nucleotide sites and degeneracy 381 recoded analyses (1.0 QC) and no discordant topologies are detected (NA QD). 382 Visualization of the distribution of GC content for first, second, and third codon positions 383 revealed substantial compositional biases at all positions between suborders or infraorders of Psocodea. Third codon positions showed the most variation in compositional biases (Fig. 5). 384 385 Members of the Amphientometae possess some of the highest levels of GC content for third 386 codon positions, similar to the pattern observed in Psocomorpha. In contrast members of the

387	Nanopsocetae tend to be more AT rich at third codon positions, similar to patterns observed in
388	third codon positions of the Trogiomorpha. First and second codon positions showed similar
389	patterns of compositional biases, but with much lower levels of variance around the medians
390	relative to third positions (Figs. 6 and 7). First codon positions showed more variation in the
391	medians relative to second codon positions. However, members of the Psocomorpha and
392	Amphientometae were suggested to have the highest levels of GC content in first and second
393	positions and the Nanopsocetae and Trogiomorpha tended to be more AT rich in first and second
394	codon positions (Fig. 6 and 7).
395	Divergence time analysis indicates the main diversification of extant lineages of parasitic
396	lice occurred approximately 60 Ma (74-123: 95% Myr) following the K-PG boundary mass
397	extinction event. The origin of parasitism within Psocodea could have occurred a maximum of
398	115 Ma (95-148: 95% Myr) based on estimated divergence of the parasitic lineage from non-
399	parasitic members of Psocodea. Divergences between suborders of Psocodea are estimated to
400	have occurred in the lower Jurassic with the deepest split between extant suborders occurring
401	192 Ma (154-255: 95% Myr) (Fig. 1).
402	
403	Discussion
404	
405	Combining Data and Compositional Biases
406	
407	Few phylogenomic studies have explored the results of combining whole genome and
408	transcriptome-based data (Bossert et al. 2019). Higher level phylogenomic studies of insects
409	have used transcriptome sequencing to produce large data matrices of thousands of genes (Misof

Phylogenomics of Psocodea

410	et al. 2014; Peters et al. 2017; Johnson et al. 2018a; Simon et al. 2019; Wipfler et al. 2019).
411	Transcriptome sequencing relies on freshly preserved material, from which RNA can be
412	extracted. Contigs can be annotated for single copy ortholog genes, and methods exist to account
413	for splice variants to resolve these to a single gene sequence (Petersen et al. 2017). New methods
414	have also been developed to individually assemble and annotate single copy genes from shotgun
415	Illumina genome sequences (Allen et al. 2015, 2017). Whole genome data can include non-
416	coding sequences, but poorly aligned regions can be masked when aligned against transcriptome
417	sequences. Thus, it is possible to combine whole genome and transcriptome data to develop large
418	phylogenomic datasets. Here we used a customized bioinformatic pipeline to combine
419	transcriptome and genome data to produce a shared set of nuclear orthologs.
420	Large-scale compositional biases appeared to have some effect on the phylogenetic
421	results for certain taxonomic groups within Psocodea. Most of the instability in our results
422	centered around the placement of Amphientometae, a group of free-living bark lice traditionally
423	placed in the suborder Troctomorpha based upon morphological synapomorphies (Mockford
424	1993; Lienhard and Smithers 2002; Yoshizawa and Lienhard 2010). However, in our
425	phylogenomic analyses, large base compositional biases resulted in alternative placements of
426	Amphientometae under different nucleotide recoding methods. This is most evident when all
427	nucleotide sites are analyzed in which the Amphientometae are placed with 100% bootstrap
428	support with Psocomorpha, resulting in paraphyly of Troctomorpha. Examination of GC content
429	of third codon positions across the alignment (Fig. 5) shows that Amphientometae are similar in
430	GC composition to Psocomorpha. This same pattern of GC biases is also seen in first and second
431	codon positions (Figs. 6 and 7), although when second codon positions alone are analyzed,
432	Amphientometae is recovered as sister to the remainder of the Troctomorpha, similar to the

433	result using dege	eneracy recoding	. However,	when third	codon	positions are	e removed,
	0 0	2 0	,			1	,

434 Amphientometae is still placed as the sister of Psocomorpha, suggesting modest base

435 composition biases at first codon positions also affect the results.

436 Four cluster likelihood-mapping (quartet mapping) and quartet sampling analyses of the 437 concatenated data demonstrate that quartet-based analyses may also be affected by substantial 438 compositional biases. Likelihood-mapping analyses produce results similar to the ML tree 439 topology itself for a given data type. For example, regarding the position of Amphientometae, 440 degeneracy recoded, and second codon positions produce similar scores and in agreement with the phylogenetic placement of this group with Nanopsocetae (Fig. 2). Degeneracy recodes all 441 442 nucleotides present in the alignment using IUPAC ambiguity codes so all codons that code for a synonymous mutation are nearly identical (Zwick et al. 2012). This recoding method helps 443 444 account for the large amount of saturation that can take place at most notably third (Fig. 5) but 445 also first (Fig. 6) codon positions, as well as accounting for some variation in base composition. 446 However, given the similar phylogenetic results when degeneracy recoded and second codon 447 positions only are analyzed, it appears that much of the signal supporting monophyletic Troctomorpha is present in second codon positions. Compositional biases and saturation of third 448 449 and first codon positions can also skew quartet-based analyses. It appears that the relatively high 450 percent GC base composition in both Amphientometae and Psocomorpha (blue and green in 451 Figs. 5, 6), particularly at first and third codon positions, drives the majority of quartets to 452 support a relationship between these two taxa (Fig. 2), similar to the full phylogeny derived from 453 these data types. Although second base positions also show a similar pattern in the ranking of 454 base composition frequencies (blue and green in Fig. 7), this variation spans only a few percent 455 difference and is apparently not enough to influence the resulting tree.

Phylogenomics of Psocodea

456	Conflicting topologies in regard to the phylogenetic position of Amphientometae between
457	recoded data types demonstrates the limitations of using a simplified model of evolution when
458	analyzing millions of base pairs of data. Third positions are known to saturate at high rates due to
459	degeneracy of the genetic code that allows for the emergence of silent mutations. This point is
460	obvious when considering that a stable topology is obtained when degeneracy recoded data is
461	analyzed (Fig. 1). Nearly identical results are obtained when second codon positions only are
462	analyzed (Supplemental Fig. 1). Thus, when phylogenomic analyses are limited by computing
463	power, it may be best to consider alternate methods that reduce data set sizes and recoding
464	strategies to reduce rate heterogeneity and compositional bias that may exist at first and third
465	codon positions between distantly related taxa.

466

467 Dating Analysis and the Origin of Parasitism

468

After accounting for heterogeneity by using the degeneracy recoded matrix, the dating 469 470 analysis provides insight into the evolution of parasitic and non-parasitic members within Psocodea. We obtained an estimate for some of the earliest divergences within parasitic lice (i.e. 471 shortly after the K-Pg boundary) similar to that found by a recent phylogenomic study (Johnson 472 473 et al. 2018b) that used mostly calibration points from cospeciation events rather than from fossil 474 free-living bark lice. Our estimate for the earliest divergence within parasitic lice (~100 Ma) was similar to this previous estimate (between 90 and 100 Ma) (Johnson et al. 2018b). The dating 475 estimates completed in this study suggest generally younger origins for non-parasitic members 476 477 than have been previously reported (Misof et al. 2014; Johnson et al. 2018b; Yoshizawa et al. 478 2019). The calibrations for analyses produced in this present study are fossil-based minimum age

479	constraints (Mockford et al. 2013) with a maximum age constraint at the root based on previous
480	Bayesian estimates (Johnson et al. 2018a). Differences in calibration methods may account for
481	some of older divergence estimates for non-parasitic members reported in other studies (Misof et
482	al. 2014; Johnson et al. 2018a; Yoshizawa et al. 2019). The dating analysis suggests the origin of
483	parasitism may have occurred a maximum of 115 Ma, predating the K-Pg boundary (66 Ma)
484	(Fig. 1). Our 95% confidence interval for the origin of parasitism also predates the K-Pg
485	boundary (95-148 Ma). Therefore, it remains a possibility that the ancient host of the first
486	parasitic louse may have been an endothermic dinosaur, although fossil evidence would be
487	needed to confirm this. However, the common ancestor of the clade that eventually evolved
488	parasitism may have been non-parasitic. Therefore, parasitism may have originated anytime
489	between 115 Ma and the initial diversification of parasitic lice (100 Ma).
490	
491	Implications for the Taxonomic Classification of Psocodea
492	
493	Our phylogenomic analyses, plus existing morphological evidence (Lyal 1985; Mockford
494	1993; Yoshizawa and Johnson 2010) help establish a stable subordinal level classification
495	scheme for the order Psocodea (Table 3). Given that previous analyses have suggested, both
496	based on morphological and molecular evidence, that free living Psocoptera and parasitic
497	Phthiraptera together form a monophyletic lineage (Lyal 1985; Johnson et al. 2004, 2018a), we
498	recognize Psocodea as a single order encompassing both traditional Psocoptera and Phthiraptera.
499	Below the level of order, the goal of this classification scheme is to reflect the higher-level
500	phylogeny, but also retain as many widely used historical names as possible. In particular, given

Phylogenomics of Psocodea

501	the widespread usage of Phthiraptera, we seek to retain this name, which necessitates changes in
502	taxonomic rank for certain groups within Troctomorpha.

503 A monophyletic Phthiraptera (parasitic lice) is derived from within the Troctomorpha and 504 sister to the family Liposcelididae across all analyses. All analyses suggest that the origin of 505 parasitism occurred once within the Troctomorpha. Thus, it is necessary to recognize 506 Phthiraptera at a lower taxonomic rank than the suborder Troctomorpha from which these 507 parasites are derived. Given their widespread usage and acceptance (Lienhard and Smithers 508 2002), we prefer to retain the three historical suborders of bark lice (Trogiomorpha, 509 Psocomorpha, and Troctomorpha) within Psocodea. We prefer to retain the infraordinal 510 taxonomic ranks within Psocomorpha and Trogiomorpha given that these groups are generally 511 supported by our analyses. Given that parasitic lice are also embedded within the traditional 512 Infraorder Nanopsocetae, this would further reduce the rank of Phthiraptera. As a solution to this 513 issue, we elect to divide Nanopsocetae into three infraorders (Table 3). Under this scheme, we 514 also preserve many of the traditional subordinal names within Phthiraptera, and they are now 515 placed at the rank of Parvorder. This scheme also allows us to retain all other existing subordinal parasitic louse names, including Amblycera, Rhynchophthirina, and Anoplura. 516 517 One final concern with regards to classification is the status of Ischnocera. Ischnocera 518 (chewing lice) as currently defined (to include both Philopteridae and Trichodectidae) (Price et 519 al. 2003) was paraphyletic across all analyses. This paraphyly has also been detected in previous 520 studies (Johnson et al. 2018b; Song et al. 2019). Therefore, we suggest that Ischnocera be

- retained to recognize the bulk of diversity (i.e. Philopteridae, ~3,000 species) (Price et al. 2003)
- and that the Parvorder Trichodectera (Song et al. 2019) be recognized for the less diverse
- 523 mammal infesting clade Trichodectidae (~400 species) (Price et al. 2003) (Table 3).

524 Supplemental Material

- 525 Data files and other materials, can found at the Dryad data repository at http://datadryad.org,
- 526 https://doi.org/10.5061/dryad.c59zw3r50
- 527

528 Acknowledgments

- 529 We would like to thank Rodrigo L. Ferreira for field support and supplying samples. We would
- 530 like to thank Charles Lienhard for information and discussion. We thank the following
- individuals for assistance in obtaining samples: R. Wilson, D.H. Clayton, T.D. Galloway, E.
- 532 Osnas, T. Spradling, L. Mugisha, A. K. Saxena, T. Chesser, E. DiBlasi, F. Daunt, V. Smith, R.
- 533 Furness, E.L. Mockford, J. Jankowski, J.M. Allen, R. Faucett, B. O'Shea, K.G. McCracken, R.E.
- Junge, J.D. Weckstein, A. Lawrence, K.C. Bell, M.S. Leonardi, and M. Bowser. Photo credit to
- 535 J. Gausas/Terrestrial Parasite Tracker Project.
- 536

537 Funding

538 This work was supported by JSPS Grants no. 15H04409 and 19H03278 to K.Y.; US NSF DEB-

- 539 0612938, DEB-1342604, XSEDE DEB-16002, DEB-1855812, DEB-1925487 to K.P.J.; and US
- 540 NSF DEB-1239788 to K.P.J. and C.H.D.
- 541

Phylogenomics of Psocodea

542 References

Alkan C., Sajjadian S., Eichler E.E. 2011. Limitations of next-generation genome sequence
 assembly. Nat Methods. 8:61–65.

Allen J.M., Boyd B., Nguyen N.-P., Vachaspati P., Warnow T., Huang D.I., Grady P.G.S., Bell K.C., Cronk Q.C.B., Mugisha L., Pittendrigh B.R., Leonardi M.S., Reed D.L., Johnson K.P. 2017. Phylogenomics from Whole Genome Sequences Using aTRAM. Syst. Biol. 66:786–798.

- Allen J.M., Huang D.I., Cronk Q.C., Johnson K.P. 2015. aTRAM automated target restricted
 assembly method: a fast method for assembling loci across divergent taxa from next generation sequencing data. BMC Bioinformatics. 16.
- Bossert S., Murray E.A., Almeida E.A.B., Brady S.G., Blaimer B.B., Danforth B.N. 2019.
 Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Mol Phylogenet Evol. 130:121–131.

Bossert S., Murray E.A., Blaimer B.B., Danforth B.N. 2017. The impact of GC bias on phylogenetic accuracy using targeted enrichment phylogenomic data. Mol. Phylogenet Evol. 111:149–157.

- Breinholt J.W., Kawahara A.Y. 2013. Phylotranscriptomics: Saturated Third Codon Positions
 Radically Influence the Estimation of Trees Based on Next-Gen Data. Genome Biol Evol.
 5:2082–2092.
- Broadhead E., Richards A.M. 1982. The Psocoptera of East Africa—a taxonomic and ecological
 survey. Biol J Linn Soc. 17:137–216.
- Broadhead E., Wapshere A.J. 1966. Mesopsocus Populations on Larch in England--The
 Distribution and Dynamics of Two Closely-Related Coexisting Species of Psocoptera
 Sharing the Same Food Resource. Ecol Monogr. 36:327–388.
- Capella-Gutiérrez S., Silla-Martínez J.M., Gabaldón T. 2009. trimAl: a tool for automated
 alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 25:1972–1973.
- 568 Clayton D.H., Bush S.E., Johnson K.P. 2015. Coevolution of Life on Hosts: Integrating Ecology
 569 and History. Chicago ; London: University of Chicago Press.
- Cox C.J., Li B., Foster P.G., Embley T.M., Civáň P. 2014. Conflicting Phylogenies for Early
 Land Plants are Caused by Composition Biases among Synonymous Substitutions. Syst
 Biol. 63:272–279.

Duchêne D.A., Duchêne S., Ho S.Y.W. 2017. New Statistical Criteria Detect Phylogenetic Bias Caused by Compositional Heterogeneity. Mol Biol Evol. 34:1529–1534.

575 576	Durden L.A. 2019. Chapter 7 - Lice (Phthiraptera). In: Mullen G.R., Durden L.A., editors. Medical and Veterinary Entomology (Third Edition). Academic Press. p. 79–106.					
577 578 579	Emeljanov A.F., Golub N.V., Kuznetsova V.G. 2001. (Evolutionary Transformation of Testes and Ovaries in Booklice, Birdlice, and Sucking Lice (Psocoptera, Phthiraptera: Mallophaga, Anoplura). 81:20.					
580 581	Foster P.G., Jermiin L.S., Hickey D.A. 1997. Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44:282-288.					
582 583	Galtier N., Gouy M. 1995. Inferring phylogenies from DNA sequences of unequal base compositions. PNAS. 92:11317–11321.					
584	Gordon A., Hannon G.J. 2010. Fastx-toolkit					
585	Houseley J., Tollervey D. 2009. The Many Pathways of RNA Degradation. Cell. 136:763–776.					
586 587 588	Ishikawa S.A., Inagaki Y., Hashimoto T. 2012. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences from Nucleotide Sequence Data with Parallel Compositional Heterogeneity. Evol Bioinform Online. 8:EBO.S9017.					
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605	 Jarvis E.D., Mirarab S., Aberer A.J., Li B., Houde P., Li C., Ho S.Y.W., Faircloth B.C., Nabholz B., Howard J.T., Suh A., Weber C.C., Fonseca R.R. da, Li J., Zhang F., Li H., Zhou L., Narula N., Liu L., Ganapathy G., Boussau B., Bayzid M.S., Zavidovych V., Subramanian S., Gabaldón T., Capella-Gutiérrez S., Huerta-Cepas J., Rekepalli B., Munch K., Schierup M., Lindow B., Warren W.C., Ray D., Green R.E., Bruford M.W., Zhan X., Dixon A., Li S., Li N., Huang Y., Derryberry E.P., Bertelsen M.F., Sheldon F.H., Brumfield R.T., Mello C.V., Lovell P.V., Wirthlin M., Schneider M.P.C., Prosdocimi F., Samaniego J.A., Velazquez A.M.V., Alfaro-Núñez A., Campos P.F., Petersen B., Sicheritz-Ponten T., Pas A., Bailey T., Scofield P., Bunce M., Lambert D.M., Zhou Q., Perelman P., Driskell A.C., Shapiro B., Xiong Z., Zeng Y., Liu S., Li Z., Liu B., Wu K., Xiao J., Yinqi X., Zheng Q., Zhang Y., Yang H., Wang J., Smeds L., Rheindt F.E., Braun M., Fjeldsa J., Orlando L., Barker F.K., Jønsson K.A., Johnson W., Koepfli KP., O'Brien S., Haussler D., Ryder O.A., Rahbek C., Willerslev E., Graves G.R., Glenn T.C., McCormack J., Burt D., Ellegren H., Alström P., Edwards S.V., Stamatakis A., Mindell D.P., Cracraft J., Braun E.L., Warnow T., Jun W., Gilbert M.T.P., Zhang G. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 346:1320–1331. 					
606 607 608	Jermiin L.S., Ho S.Y.W., Ababneh F., Robinson J., Larkum A.W.D. 2004. The Biasing Effect of Compositional Heterogeneity on Phylogenetic Estimates May be Underestimated. Syst Biol. 53:638–643.					

Johnson K.P. 2019. Putting the genome in insect phylogenomics. Curr Opin Insect Science.
 36:111-117.

Phylogenomics of Psocodea

Johnson K.P., Cruickshank R.H., Adams R.J., Smith V.S., Page R.D.M., Clayton D.H. 2003.
 Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera).
 Mol Phylogenet Evol. 26:231–242.

Johnson K.P., Dietrich C.H., Friedrich F., Beutel R.G., Wipfler B., Peters R.S., Allen J.M.,
Petersen M., Donath A., Walden K.K.O., Kozlov A.M., Podsiadlowski L., Mayer C.,
Meusemann K., Vasilikopoulos A., Waterhouse R.M., Cameron S.L., Weirauch C.,
Swanson D.R., Percy D.M., Hardy N.B., Terry I., Liu S., Zhou X., Misof B., Robertson
H.M., Yoshizawa K. 2018a. Phylogenomics and the evolution of hemipteroid insects.
PNAS. 115:12775–12780.

- Johnson K.P., Nguyen N., Sweet A.D., Boyd B.M., Warnow T., Allen J.M. 2018b. Simultaneous
 radiation of bird and mammal lice following the K-Pg boundary. Biol Lett. 14:20180141.
- Johnson K.P., Yoshizawa K., Smith V.S. 2004. Multiple origins of parasitism in lice. P R Soc B Biol Sci. 271:1771–1776.
- Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A.,
 Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P., Drummond A. 2012.
 Geneious Basic: An integrated and extendable desktop software platform for the
 organization and analysis of sequence data. Bioinformatics. 28:1647–1649.
- Kozlov A.M., Aberer A.J., Stamatakis A. 2015. ExaML version 3: a tool for phylogenomic
 analyses on supercomputers. Bioinformatics. 31:2577–2579.
- Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017. PartitionFinder 2: New
 Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological
 Phylogenetic Analyses. Mol Biol Evol. 34:772–773.
- Laumer C.E., Gruber-Vodicka H., Hadfield M.G., Pearse V.B., Riesgo A., Marioni J.C., Giribet
 G. 2018. Support for a clade of Placozoa and Cnidaria in genes with minimal
 compositional bias. eLife. 7:e36278.
- Lienhard C., Smithers C.N. 2002. Psocoptera (Insecta): world catalogue and bibliography.
 Psocoptera (Insecta): world catalogue and bibliography.
- Lyal C.H.C. 1985. Phylogeny and classification of the Psocodea, with particular reference to the
 lice (Psocodea: Phthiraptera). Syst Entomol. 10:145–165.
- 640 Mirarab S., Nguyen N., Guo S., Wang L.-S., Kim J., Warnow T. 2014a. PASTA: Ultra-Large
 641 Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. J Comput
 642 Biol. 22:377–386.
- 643 Mirarab S., Reaz R., Bayzid M.S., Zimmermann T., Swenson M.S., Warnow T. 2014b.
 644 ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics.
 645 30:i541-i548.

- 646 Mirarab S., Warnow T. 2015. ASTRAL-II: coalescent-based species tree estimation with many 647 hundreds of taxa and thousands of genes. Bioinformatics. 31:i44-i52. Misof B., Liu S., Meusemann K., Peters R.S., Donath A., Mayer C., Frandsen P.B., Ware J., 648 649 Flouri T., Beutel R.G., Niehuis O., Petersen M., Izquierdo-Carrasco F., Wappler T., Rust 650 J., Aberer A.J., Aspöck U., Aspöck H., Bartel D., Blanke A., Berger S., Böhm A., 651 Buckley T.R., Calcott B., Chen J., Friedrich F., Fukui M., Fujita M., Greve C., Grobe P., Gu S., Huang Y., Jermiin L.S., Kawahara A.Y., Krogmann L., Kubiak M., Lanfear R., 652 653 Letsch H., Li Y., Li Z., Li J., Lu H., Machida R., Mashimo Y., Kapli P., McKenna D.D., Meng G., Nakagaki Y., Navarrete-Heredia J.L., Ott M., Ou Y., Pass G., Podsiadlowski 654 L., Pohl H., von Reumont B.M., Schütte K., Sekiva K., Shimizu S., Slipinski A., 655 656 Stamatakis A., Song W., Su X., Szucsich N.U., Tan M., Tan X., Tang M., Tang J., 657 Timelthaler G., Tomizuka S., Trautwein M., Tong X., Uchifune T., Walzl M.G., Wiegmann B.M., Wilbrandt J., Wipfler B., Wong T.K.F., Wu Q., Wu G., Xie Y., Yang 658 659 S., Yang Q., Yeates D.K., Yoshizawa K., Zhang Q., Zhang R., Zhang W., Zhang Y., 660 Zhao J., Zhou C., Zhou L., Ziesmann T., Zou S., Li Y., Xu X., Zhang Y., Yang H., Wang J., Wang J., Kjer K.M., Zhou X. 2014. Phylogenomics resolves the timing and pattern of 661 insect evolution. Science. 346:763. 662 663 Mockford E.L. 1993. North American Psocoptera (Insecta). North American Psocoptera 664 (Insecta). Mockford E.L., Lienhard C., Yoshizawa K., Mockford E.L., Lienhard C., Yoshizawa K. 2013. 665 Revised classification of "Psocoptera" from Cretaceous amber, a reassessment of 666 667 published information. Insecta matsumurana. New series : journal of the Faculty of 668 Agriculture Hokkaido University, series entomology. 69:1–26.
- 669 de Moya R.S., Allen J.M., Sweet A.D., Walden K.K.O., Palma R.L., Smith V.S., Cameron S.L., 670 Valim M.P., Galloway T.D., Weckstein J.D., Johnson K.P. 2019. Extensive hostswitching of avian feather lice following the Cretaceous-Paleogene mass extinction 671 672 event. Comm Biol. 2:1-6.
- de Moya R.S. 2020. Psocodea Phylogenomic dataset, v2, Dryad, Dataset, 673 674 https://doi.org/10.5061/dryad.c59zw3r50 675
- New T.R. 1970. The Relative Abundance of Some British Psocoptera on Different Species of 676 677 Trees. J Anim Ecol. 39:521–540.
- 678 New T.R. 1987. Biology of the Psocoptera. Orient Insects. 21:1–109.
- 679 Nguyen L.-T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A Fast and Effective 680 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol. 681 32:268-274.
- 682 Pattengale N.D., Alipour M., Bininda-Emonds O.R.P., Moret B.M.E., Stamatakis A. 2009. How Many Bootstrap Replicates Are Necessary? Lect N Bioinformat.: 184-200. 683

Phylogenomics of Psocodea

- Pease J.B., Brown J.W., Walker J.F., Hinchliff C.E., Smith S.A. 2018. Quartet Sampling
 distinguishes lack of support from conflicting support in the green plant tree of life. Am J
 Bot. 105:385–403.
- Peters R.S., Krogmann L., Mayer C., Donath A., Gunkel S., Meusemann K., Kozlov A.,
 Podsiadlowski L., Petersen M., Lanfear R., Diez P.A., Heraty J., Kjer K.M., Klopfstein
 S., Meier R., Polidori C., Schmitt T., Liu S., Zhou X., Wappler T., Rust J., Misof B.,
 Niehuis O. 2017. Evolutionary History of the Hymenoptera. Curr Biol. 27:1013–1018.
- Petersen M., Meusemann K., Donath A., Dowling D., Liu S., Peters R.S., Podsiadlowski L.,
 Vasilikopoulos A., Zhou X., Misof B., Niehuis O. 2017. Orthograph: a versatile tool for
 mapping coding nucleotide sequences to clusters of orthologous genes. BMC
 Bioinformatics. 18.
- Philippe H., Brinkmann H., Lavrov D.V., Littlewood D.T.J., Manuel M., Wörheide G., Baurain
 D. 2011. Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not
 Enough. PLOS Biology. 9:e1000602.
- 698 Posada D., Crandall K.A. 1998. MODELTEST: testing the model of DNA substitution.
 699 Bioinformatics. 14:817–818.
- Price R.D., Hellenthal R.A., Palma R.L., Johnson K.P., Clayton D.H. 2003. Chewing Lice:
 World Checklist and Biological Overview. Champaign, Ill.: Illinois Natural History
 Survey.
- Prum R.O., Berv J.S., Dornburg A., Field D.J., Townsend J.P., Lemmon E.M., Lemmon A.R.
 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA
 sequencing. Nature. 526:569–573.
- Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. 2018. Posterior Summarization in
 Bayesian Phylogenetics Using Tracer 1.7. Syst Biol. 67:901–904.
- Regier J.C., Shultz J.W., Zwick A., Hussey A., Ball B., Wetzer R., Martin J.W., Cunningham
 C.W. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear
 protein-coding sequences. Nature. 463:1079–1083.
- Romiguier J., Cameron S.A., Woodard S.H., Fischman B.J., Keller L., Praz C.J. 2016.
 Phylogenomics Controlling for Base Compositional Bias Reveals a Single Origin of Eusociality in Corbiculate Bees. Mol Biol Evol. 33:670–678.
- Roure B., Philippe H. 2011. Site-specific time heterogeneity of the substitution process and its
 impact on phylogenetic inference. BMC Evol Biol. 11:17.
- 716 RS Team. 2015. RStudio: integrated development for R. .

Sayyari E., Mirarab S. 2016. Fast Coalescent-Based Computation of Local Branch Support from Quartet Frequencies. Mol Biol Evol. 33:1654–1668.

719	Scholtz C.H. 2016. The higher classification of southern African insects. Afr Entomol. 24:545–
720	555.
721	Sheffield N.C., Song H., Cameron S.L., Whiting M.F. 2009. Nonstationary Evolution and
722	Compositional Heterogeneity in Beetle Mitochondrial Phylogenomics. Syst Biol. 58:381–
723	394.
724	Simion P., Philippe H., Baurain D., Jager M., Richter D.J., Di Franco A., Roure B., Satoh N.,
725	Quéinnec É., Ereskovsky A., Lapébie P., Corre E., Delsuc F., King N., Wörheide G.,
726	Manuel M. 2017. A Large and Consistent Phylogenomic Dataset Supports Sponges as the
727	Sister Group to All Other Animals. Curr Biol. 27:958–967.
728	Simmons M.P. 2017. Relative benefits of amino-acid, codon, degeneracy, DNA, and purine-
729	pyrimidine character coding for phylogenetic analyses of exons - Simmons - 2017 -
730	Journal of Systematics and Evolution - Wiley Online Library. Available from
731	http://onlinelibrary.wiley.com/wol1/doi/10.1111/jse.12233/full.
732 733	Simon S., Blanke A., Meusemann K. 2018. Reanalyzing the Palaeoptera problem - The origin of insect flight remains obscure. Arthropod Struct Dev. 47:328–338.
734	Simon S., Letsch H., Bank S., Buckley T., Donath A., Liu S., Machida R., Meusemann K., Misof
735	B., Podsiadlowski L., Zhuo X., Wipfler B., Bradler S. 2019. Old World and New World
736	Phasmatodea: Phylogenomics Resolve the Evolutionary History of Stick and Leaf
737	Insects. Front Ecol Evol. 7.
738 739	Simpson J.T., Wong K., Jackman S.D., Schein J.E., Jones S.J.M., Birol İ. 2009. ABySS: A parallel assembler for short read sequence data. Genome Res. 19:1117–1123.
740	Skinner R.K., Dietrich C.H., Walden K.K.O., Gordon E., Sweet A.D., Podsiadlowski L.,
741	Petersen M., Simon C., Takiya D.M., Johnson K.P. 2020. Phylogenomics of
742	Auchenorrhyncha (Insecta: Hemiptera) using transcriptomes: examining controversial
743	relationships via degeneracy coding and interrogation of gene conflict. Syst Entomol.
744	45:85–113.
745 746	Slater G.S.C., Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 6:31.
747	Song F., Li H., Liu GH., Wang W., James P., Colwell D.D., Tran A., Gong S., Cai W., Shao R.
748	2019. Mitochondrial Genome Fragmentation Unites the Parasitic Lice of Eutherian
749	Mammals. Syst Biol. 68:430–440.
750 751	Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.
752 753	Strimmer K., Haeseler A. von. 1997. Likelihood-mapping: A simple method to visualize phylogenetic content of a sequence alignment. PNAS. 94:6815–6819.

Phylogenomics of Psocodea

- Sukumaran J., Holder M.T. 2015. SumTrees: Phylogenetic Tree Summarization. 4.0.0. Available
 from https://github.com/jeetsukumaran/DendroPy.
- Vaidya G., Lohman D.J., Meier R. 2011. SequenceMatrix: concatenation software for the fast
 assembly of multi-gene datasets with character set and codon information. Cladistics.
 27:171–180.
- Vasilikopoulos A., Balke M., Beutel R.G., Donath A., Podsiadlowski L., Pflug J.M., Waterhouse
 R.M., Meusemann K., Peters R.S., Escalona H.E., Mayer C., Liu S., Hendrich L., Alarie
 Y., Bilton D.T., Jia F., Zhou X., Maddison D.R., Niehuis O., Misof B. 2019.
 Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an
 evaluation of phylogenetic conflict and systematic error. Mol Phylogenet Evol. 135:270–
 285.
- Wang R., Yao Y., Ren D., Shih C. 2019. Psocoptera Barklice and Booklice. Rhythms of Insect
 Evolution. John Wiley & Sons, Ltd. p. 185–188.
- Wappler T., Smith V.S., Dalgleish R.C. 2004. Scratching an ancient itch: an Eocene bird louse
 fossil. P R Soc B-Biol Sci. 271:S255–S258.
- Wipfler B., Letsch H., Frandsen P.B., Kapli P., Mayer C., Bartel D., Buckley T.R., Donath A.,
 Edgerly-Rooks J.S., Fujita M., Liu S., Machida R., Mashimo Y., Misof B., Niehuis O.,
 Peters R.S., Petersen M., Podsiadlowski L., Schütte K., Shimizu S., Uchifune T.,
 Wilbrandt J., Yan E., Zhou X., Simon S. 2019. Evolutionary history of Polyneoptera and
 its implications for our understanding of early winged insects. Proc Natl Acad Sci USA.
 116:3024–3029.
- Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol Biol Evol.
 24:1586–1591.
- Yoshizawa K. 2002. Phylogeny and higher classification of suborder Psocomorpha (Insecta:
 Psocodea: 'Psocoptera'). Zool J Linn Soc. 136:371–400.
- Yoshizawa K., Johnson K.P. 2010. How stable is the "Polyphyly of Lice" hypothesis (Insecta:
 Psocodea)?: A comparison of phylogenetic signal in multiple genes. Mol Phylogenet
 Evol. 55:939–951.
- Yoshizawa K., Johnson K.P. 2013. Changes in base composition bias of nuclear and mitochondrial genes in lice (Insecta: Psocodea). Genetica. 141:491–499.
- Yoshizawa K., Johnson K.P. 2014. Phylogeny of the suborder Psocomorpha: congruence and
 incongruence between morphology and molecular data (Insecta: Psocodea: 'Psocoptera').
 Zool J Linn Soc. 171:716–731.

Yoshizawa K., Lienhard C. 2010. In search of the sister group of the true lice : A systematic review of booklice and their relatives, with an updated checklist of Liposcelididae (Insecta: Psocodea). Arthropod Syst Phylo. 68:181–195.

- 790 Yoshizawa K., Lienhard C., Johnson K.P. 2006. Molecular systematics of the suborder 791 Trogiomorpha (Insecta: Psocodea: 'Psocoptera'). Zool J Linn Soc. 146:287-299.
- 792 Yoshizawa K., Lienhard C., Yao I., Ferreira R.L. 2019. Cave insects with sex-reversed genitalia had their most recent common ancestor in West Gondwana (Psocodea: Prionoglarididae: 793 794 Speleketorinae). Entomol Sci. 22:334–338.
- Ω.J. .p-Level. .odels. PLOS 795 Zwick A., Regier J.C., Zwickl D.J. 2012. Resolving Discrepancy between Nucleotides and Amino Acids in Deep-Level Arthropod Phylogenomics: Differentiating Serine Codons in 796 797 21-Amino-Acid Models. PLOS ONE. 7:e47450.
- 798

799

http://mc.manuscriptcentral.com/systbiol

Phylogenomics of Psocodea

800 Figure Captions

801

802	Fig. 1: The result of phylogenomic analyses using degeneracy recoded nucleotide data. Clade						
803	support is depicted as bootstrap support. The timescale provides an estimate of divergences						
804	suggested by MCMCtree dating analyses using correlated rates. Taxonomic names marked with						
805	an asterisk represent samples that are derived from transcriptomes. Names which lack the						
806	asterisk represent samples derived from shotgun whole genome sequencing. The H. following						
807	names indicate the taxon is classified within the Homilopsocidea.						
808							
809	Fig. 2: The result of likelihood-mapping derived from IQtree. Results show the percentage of						
810	quartets derived from analyses supporting relationships among the Trogiomorpha, Psocomorpha,						
811	Nanopsocetae, and Amphientometae.						
012							
812							
812	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites.						
812 813 814	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet						
812 813 814 815	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are						
 812 813 814 815 816 	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from						
 812 813 814 815 816 817 	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from shotgun whole genome sequencing. The H. following names indicate the taxon is classified						
 812 813 814 815 816 817 818 	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from shotgun whole genome sequencing. The H. following names indicate the taxon is classified within the Homilopsocidea.						
 812 813 814 815 816 817 818 819 	Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from shotgun whole genome sequencing. The H. following names indicate the taxon is classified within the Homilopsocidea.						
 812 813 814 815 816 817 818 819 820 	 Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from shotgun whole genome sequencing. The H. following names indicate the taxon is classified within the Homilopsocidea. 						
 812 813 814 815 816 817 818 819 820 821 	 Fig. 3: A cladogram of the result of quartet sampling based on the analysis of all nucleotide sites. Clade support is depicted as: Quartet Concordance (QC)/Quartet Differential (QD)/Quartet Informativeness (QI). Taxonomic names marked with an asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk represent samples derived from shotgun whole genome sequencing. The H. following names indicate the taxon is classified within the Homilopsocidea. Fig. 4: A cladogram of the result of quartet sampling based on the analysis of recoded nucleotides using degeneracy methods. Clade support is depicted as: Quartet Concordance						

- 823 asterisk represent samples that are derived from transcriptomes. Names which lack the asterisk
- represent samples derived from shotgun whole genome sequencing. The H. following names 824
- indicate the taxon is classified within the Homilopsocidea. 825

826

- 827 Fig. 5: Box and whisker plot showing the distribution of GC content in third codon positions
- 828 from the alignments analyzed.

829

- 830 Fig. 6: Box and whisker plot showing the distribution of GC content in first codon positions from
- 831 the alignments analyzed.

832

- ιbu. Fig. 7: Box and whisker plot showing the distribution of GC content in second codon positions 833
- 834 from the alignments analyzed.

Phylogenomics of Psocodea

836 Table Captions

Table 1: A summary of all species of Psocodea sampled and data analyzed. Transcriptome

sequences are available from a previous study (Johnson et al. 2018a).

839

Table 2: A summary of the phylogenetic analyses completed, and respective data type analyzed.

841

842 Table 3: A comparison between historical ordinal taxonomic schemes for Psocoptera and

843 Phthiraptera to the newly proposed classification scheme for a single order Psocodea.

844

845 Supplemental Figure Captions

846

847 Supplemental Fig. 1: Maximum likelihood results of the concatenated maximum likelihood

analysis of second codon positions only. Taxa marked with stars represent transcriptome-based

samples.

850

851 Supplemental Fig. 2: The ASTRAL coalescent result of 2,370 gene alignments of all nucleotide

sites. Clade support is based upon local posterior probabilities. Taxa marked with stars represent

853 transcriptome-based samples.

854

855 Supplemental Fig. 3: The ASTRAL coalescent result of 2,370 degeneracy recoded gene

alignments. Clade support is based upon local posterior probabilities. Taxa marked with stars

857 represent transcriptome-based samples.

Page 36 of 48

(Nanopsocetae, Amphientometae)-(Psocomorpha, Trogiomorpha)

2nd Codon Positions Only

Rhynchophthirina Sphaeropsocidae Amphientometae Homilopsocidea

Species

Species

Page 42 of 48

Psocodea Taxnomi	ic Sampling Scheme	ng Scheme				
Suborder or Ord-	Family	mily Tayon	Data Tura	Total PD	# Garas	SRA Accessio
Anoplura	Haematopinidae	copinidae Haematopinus eurysternus	WGS	2549976	2357	SRR5308123
Anoplura	Echinophthiriidae	hthiriidae Proechinopthirus fluctus	WGS	2253525	2335	SRR5308138
Anopiura Anopiura	Echinophthiriidae Echinophthiriidae	hthiriidae Echinopthirus horridus	WGS RNA seq	2440/91 785123	2349 1599	5кк5088465 SRR2051484
Anoplura	Linognathidae	athidae Linognathus spicatus	WGS	2567331	2332	SRR5308129
Anoplura	Polyplacidae	acidae Neohaematopinus pacificus	WGS	2787132	2364	SRR5088469
Anoplura	Pedicinidae	inidae Pedicinus badius	WGS	2330922	2359	SRR5308136
Anoplura	Pthiridae	ridae Pthirus gorillae	WGS	2789559	2368	SRR5088474
Anoplura	Pthiridae	ridae Pthirus pubis	WGS	2754231	2365	SRR5088475
Anoplura	Pediculidae	ulidae Pediculus humanus	WGS	2277984	2354	SRR5088472
Anoplura	Pediculidae	ulidae Pediculus humanus	Reference	2945068	2370	PRJNA19807
Rhynchophthirina	Haematomyzidae	omyzidae Haematomyzus elephantis	WGS RNA sea	2439042	2358 1867	SRR5308122 SRR2051491
Ischnocera	Trichodectidae	dectidae Stachiella larseni	WGS	2524617	2353	SRR5308143
Ischnocera	Trichodectidae	dectidae Geomydoecus aurei	WGS	2507592	2355	SRR5308121
Ischnocera	Philopteridae	sectidae Geomydoecus ewingi teridae Trichophilopterus babakotophilus	WGS	2596821 2497134	2310	SRR1821919 SRR5308144
Ischnocera	Philopteridae	teridae Bothriometopus macrocnemis	WGS	1835208	2259	SRR5088466
Ischnocera	Philopteridae	teridae Craspedonirmus immer	WGS	2193294	2348	SRR5308116
Ischnocera	Philopteridae	teridae Columbicola columbae	RNA sea	1968492	2356	SRR1821984
Ischnocera	Philopteridae	teridae Docophoroides brevis	WGS	2313018	2355	SRR5308117
Ischnocera	Philopteridae	teridae Halipeurus diversus	WGS	2281860	2354	SRR5308124
Ischnocera Ischnocera	Philopteridae Philopteridae	teridae Fulicoffula longipila teridae Anatoecus icterodes	WGS	2129253 2208450	2345 2338	SRR5308119 SRR5308111
Ischnocera	Philopteridae	teridae Falcolipeurus marginalis	WGS	2280087	2350	SRR5308118
Ischnocera	Philopteridae	teridae Ibidoecus bisignatus	WGS	2341512	2353	SRR5308126
Ischnocera Ischnocera	Philopteridae Philopteridae	teridae Pectinopygus varius teridae Chelopistes texanus	WGS WGS	2034798 2589447	2315 2363	5KK5308135 SRR5308114
Ischnocera	Philopteridae	teridae Oxylipeurus chiniri	WGS	2668434	2368	SRR5308134
Ischnocera	Philopteridae	teridae Degeeriella rufa	WGS	2485305	2353	SRR5088467
Ischnocera	Philopteridae	teridae Brueelia antiqua	WGS	2700864	2357	SRR5308112
Ischnocera	Philopteridae	teridae Alcedoecus sp.	WGS	2437035	2301 2359	SRR5308137
Ischnocera	Philopteridae	teridae Quadraceps punctatus	WGS	2566107	2362	SRR5308139
Ischnocera	Philopteridae	teridae Saemundssonia lari	WGS	2501502	2353	SRR5308141
Ischnocera Ischnocera	Philopteridae Philopteridae	teridae Goniodes ortygis teridae Campanulotes compar	WGS WGS	2498694 2336796	2356 2355	SRR5308120 SRR5308113
Ischnocera	Philopteridae	teridae Campanulotes compar	RNA seq	2134521	2251	SRR1821983
Ischnocera	Philopteridae	teridae Strongylocotes lipogonus	WGS	2739207	2363	SRR5308142
Ischnocera Ischnocera	Philopteridae Philopteridae	teridae Megaginus tataupensis teridae Pessoaiella absita	WGS WGS	2582559 2403510	2364 2358	SRR5308131 SRR5308145
Ischnocera	Philopteridae	teridae Osculotes curta	WGS	2480868	2363	SRR5308133
Ischnocera	Philopteridae	teridae Craspedorrhynchus sp.	RNA seq	2560936	2301	SRR1821912
Amblycera	Ricinidae	nidae Ricinus sp.	WGS	2187996	2310	SRR5308140
Amblycera	Menoponidae	oonidae Myrsidea sp.	WGS	1997502	2342	SRR5308470 SRR5308132
Amblycera	Menoponidae	oonidae Menopon gallinae	RNA seq	2405619	2263	SRR921619
Amblycera	Boopiidae	bildae Heterodoxus spiniger	WGS	2451921	2340	SRR5308125
Amblycera	Gyropidae	pomoae cummingsia maculata pidae Macrogyropus costalimai	WGS	2314959 2432211	2335 2347	SRR5308146 SRR5308130
Amblycera	Laemobothriidae	othriidae Laemobothrion tinnunculi	WGS	2425458	2344	SRR5308127
Troctomorpha	Liposcelididae	elididae Liposcelis brunnea	WGS	2112042	2329	SRR5308128
Troctomorpha	Liposcelididae	elididae Liposcelis pearmani	WGS	2199234	2346	SRR5308268
Troctomorpha	Liposcelididae Liposcelididae	elididae Embidopsocus sp. 2	KNA seq WGS	2125494 2330187	2201 2353	5KK921613 SRR5308269
Troctomorpha	Liposcelididae	elididae Embidopsocus sp. 2	RNA seq	2557295	2318	SRR5134727
Troctomorpha	Liposcelididae	elididae Embidopsocus sp.	RNA seq	963150	1709	SRR2051486
I roctomorpha Troctomorpha	Pacnytroctidae Pachytroctidae	roctidae Pachytroctes maculosus roctidae Tapinella sn.	WGS WGS	2317935 2370138	2313 2336	5KR5308279 SRR5308286
Troctomorpha	Pachytroctidae	roctidae Peritroctes sp.	WGS	2442492	2340	SRR5308280
Troctomorpha	Sphaeropsocidae	psocidae Badonnelia titei	WGS	2394783	2343	SRR5308262
Troctomorpha Troctomorph-	Sphaeropsocidae	psocidae Badonnelia titei	RNA seq	2183178	2186	SRR2051472
Troctomorpha Troctomorpha	Amphientomidae Amphientomidae	ntomidae stimulopalpus japonicus stimulopalpus japonicus	WGS RNA sea	2270973 1828280	2300 2061	SRR2051511
Troctomorpha	Musapsocidae	isocidae Musapsocus sp.	WGS	2363169	2348	SRR5308275
Troctomorpha	Compsocidae	socidae Compsocus elegans	WGS	2367267	2322	SRR5308266
Troctomorpha Psocomorpha	Electrentomidae	ntomidae Epitroctes sp. Antidae Kilowello sp.	WGS	2400144	2330	SRR5308270
Psocomorpha	Elipsocidae	ocidae Nepiomorpha sp.	WGS	2570349	2315	SRR5308272
Psocomorpha	Elipsocidae	ocidae Propsocus pulchripennis	WGS	2325882	2309	SRR5308281
Psocomorpha	Elipsocidae	ocidae Elipsocus kuriliensis	RNA seq	1843671	2158	SRR2051485
Psocomorpha Psocomorpha	Pseudocaeciliidae	aeciliidae Calopsocus reticulatus aeciliidae Bryopsocus townsendi	WGS	2301513	2288 2268	SRR5308264 SRR5308262
Psocomorpha	Pseudocaeciliidae	aeciliidae Heterocaecilius solocipennis	RNA seq	1906914	2208	SRR2051493
Psocomorpha	Trichopsocidae	osocidae Trichopsocus clarus	WGS	2332443	2298	SRR5308287
Psocomorpha	Cladiopsocidae	osocidae Cladiopsocus ocotensis	WGS	2312040	2290	SRR5308265
Psocomorpha	Ptiloneuridae Archinsocidae	euridae Loneura mombachensis	WGS	2059170	2240	SRR5308274
Psocomorpha	Epipsocidae	ocidae Neurostiqma sp.	WGS	2373123 2158530	2304	SRR5308277
Psocomorpha	Epipsocidae	ocidae Bertkauia sp.	RNA seq	1686357	1939	SRR2051473
Psocomorpha	Asiopsocidae	socidae Asiopsocus sonorensis	WGS	2368782	2298	SRR5308261
Psocomorpha	Caeciliusidae	iusidae Xanthocaecilius sommermanae	WGS RNA con	2256093	2284	SRR5308288
Psocomorpha	Lachesillidae	sillidae Anomopsocus amabilis	KINA SEQ WGS	1980198 2308974	2179 2294	SRR5308259
Psocomorpha	Lachesillidae	sillidae Lachesilla contraforcepeta	RNA seq	2164547	2279	SRR1821927
Psocomorpha	Lachesillidae	sillidae Lachesilla abiesicola	RNA seq	1658454	2106	SRR2051497
Psocomorpha	Mesopsocidae	socidae Idatenopsocus orientalis Mesonsocus uninunctatur	WGS RNA coo	2362071	2302	SRR5308271
Psocomorpha	Dasydemellidae	mellidae Matsumuraiella radiopicta	RNA seq	2026917	2212	SRR2051502
Psocomorpha	Psilopsocidae	socidae Psilopsocus sp.	WGS	2111205	2239	SRR5308283
Psocomorpha	Stenopsocidae	socidae Graphopsocus cruciatus	RNA seq	1820073	2095	SRR2051490
Psocomorpha Psocomorpha	Amphipsocidae Perinsocidae	osocidae Amphipsocus japonicus socidae Perinsocus nhaeonterus	RNA seq RNA seq	2010662	2177 2038	SRR2051466 SRR2051507
Psocomorpha	Ectopsocidae	socidae Ectopsocus briggsi	RNA seq	1870215	2125	SRR645929
Psocomorpha	Psocidae	cidae Longivalvus nubilus	RNA seq	1299474	1716	SRR2051498
Psocomorpha	Psocidae	cidae Ptycta johnsoni	RNA seq	1602536	2006	SRR1821962
Psocomorpha	Psocidae Heminsocidae	cidae Neoblaste papillosus	RNA seq	1716579	2052	SRR2051505 SRR2051492
Psocomorpha	Philotarsidae	arsidae Aaroniella sp.	RNA seq	1578200	1891	SRR2051452
Trogiomorpha	Prionoglarididae	larididae Speleketor irwini	WGS	1898916	2200	SRR5308285
Trogiomorpha	Prionoglarididae	larididae Prionoglaris stygia	WGS	2282502	2290	SRR5308282
rogiomorpha Trogiomorpha	Prionoglarididae	larididae Neotrogla sp.	WGS RNA sea	19//267	2244 2005	5KK53U8278 SRR5134732
Trogiomorpha	Psyllipsocidae	socidae Dorypteryx domestica	WGS	2330406	2308	SRR5308267
Trogiomorpha	Psyllipsocidae	socidae Psyllipsocus ramburii	RNA seq	2394803	2277	SRR5134716
Trogiomorpha	Psoquillidae	illidae Rhyopsocus sp.	WGS	2012127	2213	SRR5308284
Trogiomorpha	I rogiidae Trogiidae	uidae Lepinotus patruelis	KNA seq	2391270	2286	SRR2051476
Trogiomorpha	Lepidopsocidae	osocidae Echmepteryx hageni	RNA seq	1546566	1859	SRR1821982

Summary of Analyses Completed							
Data Type	Maximum Likelihood	Astral	Quartet Sampling	Likelihood Mapping			
All Sites	Partitioned and Concatenated	Yes	Yes	Yes			
Third Positions Removed	Concatenated Only	No	Yes	Yes			
Second Positions Only	Concatenated Only	No	Yes	Yes			
Degeneracy Recoded	Partitioned and Concatenated	Yes	Yes	Yes			

to per Review only

Traditional Classficiation:			Newly Proposed Classification:					
Order	Suborder	Infraorder	Order	Suborder	Infraorder	Parvorder		
Psocoptera:	Psocoptera: F		Psocodea:		•			
	Trogiomorpha:			Trogiomorpha	:			
		Prionoglaridetae			Prionoglarideta	e		
		Psyllipsocetae			Psyllipsocetae			
		Atropetae			Atropetae			
	Psocomorpa:			Psocomorpa:				
		Archipsocetae			Archipsocetae			
		Philotarsetae			Philotarsetae			
		Epipsocetae			Epipsocetae			
		Psocetae			Psocetae			
		Caeciliusetae			Caeciliusetae			
		Homilopsocidea			Homilopsocide	а		
	Troctomorpha:			Troctomorpha	:			
1		Amphientometae			Amphientomet	tae		
		Nanopsocetae			Sphaeropsocet	ае		
Phthiraptera:				Pachytroctetae	1			
	Amblycera				Liposcelidetae			
	Anoplura				Phthiraptera:			
	Rhynchophthirii	าล				Amblycera		
	Ischnocera					Anoplura		
						Rhynchophthirina		
						Trichodectera		
						Ischnocera		

Mesopsocus unipunctatus *

Page 46 of 48

