Research of Wasabi Japanese Traditional Spice

Research of Wasabi

VOC

Flavour and pharmaceutical properties of the volatile sulphur compounds of Wasabi (Wasabia japonica)

Medical

Inhibitory effects of Japanese horseradish (Wasabiajaponica) on the formation and genotoxicity of a potent carcinogen, acrylamide 加熱調理により発生するアクリルアミド(発ガン性物質)に対する ワサビ摂取の医学的効能

Introduction

These picture were taken at Daio Wasabi Farm in Nagano (Sep. 29, 2017)

wasabi (*Wasabia japonica*) ...mostly used for its pungent Rhizome

※ horseradish = 西洋ワサビ ≒ 山わさび(蝦夷山ワサビ)

<u>habitat</u>

- naturally gravel beds of mountain stream (12~15°C)
 roots require high level of oxygen
 - \rightarrow commercially, <u>Flooded Field Method</u> is applied

VOC from wasabi

<u>Total amounts</u> : Rhizome < Leaves < Root < Petiole

		Peak No.	Compound (NCS = isothiographic)		g/100 g essential oil		
<u> </u>			Compound (NCS – Isounoc	yanate)	Petiole	Rhizome	Root
		1	1-Penten-3-ol	0.63	-	0.01	
and the second		2	3-Butenonitrile	2.35	3.11	0.87	4.39
	Leaves	3	Isopropyl NCS	0.33	-	-	
5 10	0	4	trans-2-Hexenal	14.94	-	-	
	&	5	sec-Butyl NCS	0.81	1.94	0.6	4.39
	Detisla	6	cis-2-Penten-1-ol	0.31	0.27	0.02	0.03
	Petiole	7	Isobutyl NCS	1.05	0.09	0.03	0.11
		8	1-Hexanol	0.03	0.01	0.14	0.09
		9	Allyl NCS	55.07	79.57	83.26	79.39
		10	Unknown	14.60	_	-	-
		11	trans-2-Hexen-1-ol	0.51	0.04	0.54	0.09
X - V		12	3-Butenyl NCS	4.29	8.42	6.96	4.44
A.		13	4-Pentenyl NCS	0.45	1.27	3.65	0.73
		14	5-Hexenyl NCS		0.18	0.94	0.18
🚳 Kniz	Rhizome		6-Heptenyl NCS	-	0.14	0.06	0.95
		16	Unknown	2.65	-	_	0.08
		17	4-Methylthiobutanonitrile	0.09	0.01		0.04
		18	3-Methylthiopropyl NCS	0.39	0.36	0.13	0.41
M (Deet	19	6-Methythiohexanonitrile	0.14	0.11	0.01	0.17
1000 200	ROOT	20	4-Methylthiobutyl NCS		-	0.01	0.15
la de la construcción de la constru La construcción de la construcción d		21	7-Methylthioheptanonitrile	0.83	0.47	0.02	0.79
-		22	5-Methylthiopentyl NCS	0.08	0.21	0.58	0.36
		23	6-Methylthiohexyl NCS	0.45	1.66	1.98	2.49
		24	7-Methylthioheptyl NCS	0.16	2.10	0.18	0.73
		Total mg oi	l/100 g plant (six measurements)	28.65 ± 3.65	16.15 ± 0.45	158.02 ± 13.42	20.52 ± 2.52

Table 3. Volatile components of essential oils extracted from different parts of upland wasabi (Kumagai et al., 1994)

Mechanism : Isothiocyanate production

Glucosinolate reaction with Myrosinase

Side chain	[reaction]	Flabor of isothiosyanate	
Methyl		Lacrymator (催涙)	
Isopropyl		Pungent	
2-propenyl		Pungent, Bitter, Lacrymator	
3-Butenyl		Pungent, Aroma	
4-Pentenyl		Acrid(ツンとする香り)	
2-Phenylethl		Watercress(クレソン)aroma	

- Aglucose to Isothiocyanate
 pH = 7
- Aglucose to Nitrile compounds
 - $pH = 3 \sim 6$ or Fe^{3+} ion and/or Nitrile factor

Isothiocyanates from wasabi

*^a Root = Root + Rhizome *^b Stem = Petiole

Isothiocyanate	Wasabi Root ^a Stem ^b Leaf			Horseradish root	
Allyl	111	18.6	22.8	96.6	
n-Butyl	1.74	0.3	0.36	0.42	
3-Butenyl	1.83	0.06	0.27	0.81	
4-Pentenyl	3.9	0.66	0.78	0.10	
5-Hexenyl	1.02	0.3	0.57	0.18	
2-Phenylethyl	_	-	-	22.5	
5-Methythiopentyl	0.48	0.27	0.12		
6-Methylthiohexyl	1.89	2.64	1.14		
7-Methylthioheptyl	1.44	0.6	0.33	-	
5-Methylsulphinylpentyl	2.17	0.3	0.42	0.81	
6-Methylsuphinylhexyl	7.8	2.52	5.4	0.9	
7-Methylsulphinylheptyl	1.41	0.45	1.08	0.78	

Isothiocyanates from wasabi

Only found in wasabi, not in horseradish

<u>Allyl</u>

Main pungent conponnt (wasabi its "bite")

6-Methylthiohexyl7-MethylthiohexylFresh wasabi flavorSweetish wasabi flavor

<u>8-Methylthiohexyl (*absent in this table)</u> Wakely pungent wasabi flavor

Methylsulphinylalkyl

Although found in both species,

the amounts is lager in wasabi than in horseradish

Isothiocyanate	Wasabi			
	Root ^a	Stem ^b Leaf		
Allyl	111	18.6 22.8		
n-Butyl	1.74	0.3 0.36		
3-Butenyl	1.83	0.06 0.27		
4-Pentenyl	3.9	0.66 0.78		
5-Hexenyl	1.02	0.3 0.57		
2-Phenylethyl	-			
5-Methythiopentyl	0.48	0.27 0.12		
6-Methylthiohexyl	1.89	2.64 1.14		
7-Methylthioheptyl	1.44	0.6 0.33		
5-Methylsulphinylpentyl	2.17	0.3 0.42		
6-Methylsuphinylhexyl	7.8	2.52 5.4		
7-Methylsulphinylheptyl	1.41	0.45 1.08		

Isothiocyanate & Myrosinase

- Unsatbility of flavor due to its high volatility
 - Please prepare just before eating
- Attempt to improve storage performance
 - Dried-wasabi powder (freeze-drying, air-drying)
 - -> possible to be stored for long periods
 - but... the fragility of wasabi Myrosinase
 - → isothiocyanate in powdered-wasabi is decreased by 50% over 4weeks in room temperature

Fragility of Myrosinase

%Myrosinase can restore the loss of isothiocyanate

Differences in thermal-stability of Myrosinase

• Wasabi Myrosinase has lower stability (rapidly inactivated at temperature above 30°C)

• More thermal stable ones are added into wasabi powder (with powdered-mustard, -horseradish)

[demerit] additional unpleasant flavor may occur (ex. Turnrip(カブ) flavor from mustard)

Medical effects of eating wasabi ①

Isothiocyanates have...

- inhibition effect of platelet aggregation (血小板凝集抑制作用)
- protective effect against carcinogen (発ガン性物質抑制作用) etc...

So, should we intake isothiocyanates more and more ?

•) (• No

Some isothiocyanates act as tumor promoters above certain levels, especially, phenylhexyl isothiocyanate

Medical effects of eating wasabi ①

Isothiocyanates have...

- inhibition effect of platelet aggregation (血小板凝集抑制作用)
- protective effect against carcinogen (発ガン性物質抑制作用) etc...

Adverse effect of phenylhexyl isothiocyanate

• A diet containing...

320 ppm ~ : increase in non-invasive colon adenocarcinoma

640 ppm ~ : increase both in invasive and non-invasive forms

Medical effects of eating wasabi (2)

foutunatelly, <u>There is **no phenyl isothiocyanate** in wasabi !</u> ...and if you want to intake 320 ppm of isothiosyanates, Rhizome of wasabi must be mixed at the rate of **over 20%**

\rightarrow normal mixing rate is not claimed

Isothiocyanate	Wasabi	Horseradish root	
	Root ^a Stem ^b Leaf	2	
Allyl	111 18.6 22.8	96.6	
n-Butyl	1.74 0.3 0.36	0.42	
3-Butenyl	1.83 0.06 0.27	0.81	
4-Pentenyl	3.9 0.66 0.78	0.10	
5-Hexenvl	1.02 0.3 0.57	0.18	
2-Phenylethyl		22.5	

This is abnormal... (SASUKE, kita-24 kita-ku,)

Finally...

Wasabi is necessary to traditional Japanese foods. Actually Japanese foods are very delicious even without wasabi, but the presence of it enhances the values.

The more you know about wasabi, the more you can enjoy Japan (masui, 2017)

