

A review of nitrogen enrichment effects on three biogenic GHGs: the CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission

Environmental Media Assessment Group – MD B243-01, National Center for Environmental Assessment, Office of Research and Development, U.S. EPA, Research Triangle Park, NC 27711, USA

Lingli Liu, Tara L. Greaver *Correspondence: E-mail: lingliliu@hotmail.com, greaver.tara@epa.gov

Motivation

I am interested in how the changing environment influences our world and life.

We all know that the world is changing rapidly due to the rapid development. Human now has the power to change the nature; but on the other hand, this "haughtiness" is also regarded as a harm.

CH4 is produced under unaerobic as well as aerobic condition !

Radiative forcing of CH₄ is about 25 times of CO₂ per mass bases

Contribution of many Gases for inducing global warming

BACKGROUND

Ē

annual input of anthropogenic reactive nitrogen

(LeBauer, D.S. & Treseder, K.K. 2008)

Nitrogen deposition

Global warming

How can nitrogen addition affect the

biogenic greenhouse gas budget ?

INTRODUCTION

Ē

MECHANISM

Ę

ANPP—aboveground net primary productivity **BNPP**—belowground net primary productivity SOC—soil organic carbon **DOC**—dissolved organic carbon **DIN**—dissolved inorganic nitrogen **DON**—dissolved organic nitrogen

Carbon cycle

Related by :

- 1) photosynthesis
- 2) plant respiration
- 3) C allocation
- 4) microbial decomposition

MECHANISM

other organisms for nutrition

MECHANISM CH₄ (Anaerobic) (aerobic) organic decomposition oxidation CH4 consumption production < Methanogenic Methanotropic archaea bacteria

Ē

DATA SELECTION

Consumptingider FOTAL ecosystem fRoduction

DATA SELECTION

Ę

109 publications

313 observations

Ecosystem type;
 The level of N loading;
 Chemical form of N addition;
 Experimental condition

DATA SELECTION

parameters

- NEE——net ecosystem CO₂ exchange (non-forest natural ecosystems)
- EC ——ecosystem C content (forest ecosystems)
- SOC——soil organic carbon (agricultural ecosystems)
- CH₄ emission
- CH₄ uptake
- \cdot N₂O emission

META-ANALYSIS METHODS

- Response ratio
- Variance
- Heterogeneity
- Emission/uptake factor (F)
- Geq

META-ANALYSIS

• Response ratio

Estimate effect size for each individual observation

Treatment mean

Control mean

META-ANALYSIS

• variance

Ę

META-ANALYSIS

Ę

EMISSION/UPTAKE FACTOR

 Emission/uptake factor (F) Annual nitrogen Annual flux of GHG from Annual flux of GHG input fertilized treatment from control Estimated for variables which were significantly Changes in GHG flux on global scale influenced by nitrogen (Gea) addition

GLOBAL BIOGENIC GHG BUDGET ESTIMATION

• Changes in GHG flux on global scale (Geq)

RESULTS

1)C balance
2)CH₄ flux
3)N₂O flux
4)Global greenhouse gas budget

• 1. C balance

Ē

Effect of N addition on NEE, EC and SOC

Response variable	n	R	95% CI
NEE of non-forest n	atural ecosyste	m	
Overall	16	0.90	0.73-1.12
Grassland	7	0.95	0.64-1.40
Wetland	6	0.84	0.53-1.32
Tundra	3	0.91	0.35-2.38
EC of forest ecosyste	em		
Overall	17	1.06	1.01-1.12
	0	1 07	1.00 1.17
Coniferous	8	1.07	1.00-1.17
Coniferous Deciduous	8 9	1.07	0.97-1.11
Coniferous Deciduous SOC of agriculture ed	8 9 cosystem	1.07	0.97–1.11

non-forest natural—— NEE : no significant effect

forest—— EC : increase 6%

Coniferous forests shows higher response than deciduous forests

Agricultural—— SOC : increase 2%

Figure 3

Nitrogen deposition \rightarrow ?

Relationship between nitrogen deposition and nitrous oxide emission

Table 4 Estimates of net changes in global biogenic greenhouse gases (GHG) flux caused by N enrichment

Ο Δ (Global gre		melie Sptzka factor (2	$\mathbf{\Omega}$ N ha ⁻¹ year ⁻¹ per 1	kg N ha ^{-1} vear ^{-1})
Τ. Ν	Jional Bic	CITTOUSC	Eas para	Contraine year per la	ing it in jeur j
1		CO ₂ -C	CH ₄ -C uptake	CH4-C emission	N ₂ O-N
Forest		-24.5 ± 8.7	0.017 ± 0.005	0	0.006 ± 0.0
Grassland		0	0	0	0.006 ± 0.00
Wetland		0	0	0.008 ± 0.004	0.036 ± 0.0
Crop		-0.53 ± 0.1	$0.012 \pm 0.006 \P$	0.008 ± 0.004 ¶	0.009 ± 0.09
				global scale estimated by	
	Area (10^8 ha)§	factor (Pg CO ₂ pe	r year)†	O SUFFICÍPAT	ata
Forest	41.6	-1.31 ± 0.46	0.098 ± 0.028	0	0.041 ± 0.00
Grassland	42.6	0	0	0	0.041 ± 0.0
Wetland	12.8	0	0	0.014 ± 0.007	0.075 ± 0.02
Crop	13.5	-0.31 ± 0.06	0.055 ± 0.027 ¶	0.004 ± 0.002	0.631 ± 0.07
Sum		-1.61 ± 0.35	0.153 ± 0.056	0.018 ± 0.009	0.788 ± 0.1
Giobai net ch	ange induced by in	-0.055 ± 0.540 FgC	002 per year (= 0.179 ± 0.	094 TgC per year)	

Reference	Method	Ecosystem	N-induced sink
CO ₂ uptake (Pg CO ₂ -C per year)		
Current study	Calculated from empirical data Data inputs: mean N addition rates; ecosystem specific	Terrestrial ecosystem	↑ 0.35–0.58
Schindler & Bayley 1993	C : N response ratio Calculated from empirical data Data inputs: Global anthropogenic sources and sinks of N: sinks of C based on various C : N ratios (50–150)	Terrestrial ecosystem	↑ 0.65–1.95
Townsend et al. 1996	Perturbation model (NDEP) Data inputs: global 1 × 1° resolution data for nitrogen deposition, climate, soil properties, vegetations	Terrestrial ecosystem	↑ 0.44-0.74
Holland et al. 1997	NDEP driven by five three-dimensional chemical models, GCTM, GRANTOUR, IMAGES, and MOGUNTIA Data inputs: NOx-N (or NHx-N) based on a latitude by longitude grid (2.4–10°) and meteorological data	Terrestrial ecosystem	↑ 1.42–1.97
CH ₄ uptake (Tg CH ₄ -C per year)		
Current study	Calculated from empirical data Data inputs: mean N addition rates; ecosystem specific N-induced CH ₄ emission factor	Terrestrial ecosystem	↓2.92–6.86
Reference	Method	Ecosystem	N-induced emission
N ₂ O emission (Tg N ₂ O-N per y	vear)		
Current study	Calculated from empirical data Data inputs: mean N addition rates; ecosystem specific N-induced N-O emission factor	Terrestrial ecosystem	↑ 1.43–1.90
Bouwman 1996	Calculated from empirical data Data inputs: global total N fertilizer use; global mean fertilizer-induced N ₂ O emission factor (1.25%)	Agriculture	↑ 1.0
Bouwman et al. 2002	Residual maximum likelihood-based model Data inputs: global 0.5 × 0.5° resolution data for soil properties, climate, land use, vegetation and fertilizer application	Agriculture	↑ 1.2*
Stehfest & Bouwman 2006	Same method as Bouwman et al. 2002;	Agriculture	↑ 1.1*
CH4 emission (Tg CH4-C per ye	ear)		
Current study	Calculated from empirical data Data inputs: mean N addition rates; ecosystem specific N-induced CH ₄ emission factor	Terrestrial ecosystem	↑0.29–0.88

Summary of published estimations of nitrogen effects on the global biogenic GHG budget compared with the values from the current study

- N addition increased global terrestrial CO₂ sink.
 Carbon dioxide then decreased.
- N addition also increases global CH₄ emission, reduce CH₄ uptake and increase N₂O emission.
- CO₂ reduction could be largely offset by 53–76% from multiple ecosystems.

perspective:

1. only terrestrial ecosystem

2. not consider spatial complexity of N deposition & consequential heterogeneity of ecosystem response

3. limited empirical data for many regions and ecosystems

What I learned from this paper?

$\mathsf{methodological} \! \rightarrow \! Meta-analysis$

The benefits:

large amount of observations contribute to more general and reliable results; review the previous experiments and conclude their differences;

The limitations:

avoid artificial errors—careful selection