Ecology Letters, (2009) 12: 1103-1117 doi: 10.1111/j.1461-0248.2009.01351.x

A review of nitrogen enrichment effects on three
niogenic GHGs: the CO; sink may be largely offset
oy stimulated N,O and CH4 emission

Environmental Media Lingli Liu,
Assessment Group — MD B243-01, Tara L. Greaver
National Center for Environmental Assessment, *Correspondence: E-mail:
Office of Research and Development, U.S. EPA, lingliliu@hotmail.com,
Research Triangle Park, NC greaver.tara@epa.gov

27711, USA



Motivation

| am interested in how the changing environment influences our world and life.

We all know that the world is changing rapidly due to the rapid development.
Human now has the power to change the nature; but on the other hand, this
“haughtiness” is also regarded as a harm.
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With the development of industry, the annual input of anthropogenic reactive nitrogen has increased more than 10-fold in the last 150 years. The problem of nitrogen enrichment to ecosystems now comes into our sight.


Nitrogen deposition Global warming

(Reich, P.B, et al. 2008)
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Nitrogen deposition and greenhouse gas both are vital issues. People now pay more and more attention to these two topic. 
Are there any relationship between these two topics? The answer should be yes.
Researchers realized that the nitrogen enrichment alters biogeochemical cycling. 



INTRODUCTION

How can nitrogen addition affect the

biogenic greenhouse gas budget ?
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However, how does is work?
Understanding how nitrogen addition affects the biogenic GHG budget is important for understanding global warming under changing environment.
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N addition alters fluxes of greenhouse gases through regulating plant and microbial activities that are associated with greenhouse gas  production and consumption process. 
In this way, N addition to ecosystems alters biogenic flux of the three main greenhouse gases: carbon dioxide, methane and nitrous oxide.
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The potential mechanism is shown here. 
Red part shows the carbon cycle, and the blue part shows the nitrogen cycle.


Nitrogen carbon
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3) C allocation

4) microbial decomposition
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The N cycle is closely coupled to the C cycle by key ecosystem processes such as photosynthesis, plant respiration, C allocation and microbial decomposition.
Details about the effects are shown following.


MECHANISM
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For carbon dioxide.
For example, nitrogen addition can stimulate plant growth, finally increase carbon sequestration. 
On the other hand, increased nitrogen content will increase maintenance respiration, meanwhile, litter which contain higher nitrogen also decompose faster.
Maintenance respiration refers to the energy which is required to keep the organism in healthy living state. It is distinguished from growth respiration.


MECHANISM
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As a result, increased leaf nitrogen content leads to higher carbon loss.
Both autotrophic and heterotrophic respiration work in this process. Autotrophic respiration 
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For methane.
Methane is produced in anaerobic soils by methanogenic archaea during organic decomposition and consumed in aerobic soils via oxidation by methanotropic bacteria. The activities of methanogenic coenzymes are optimally active at low redox potentials. Nitrate can decrease methane production by increasing redox potentials. Both methane and ammonium can be oxidized by methane monooxygenase (MMO), and ammonium therefore usually inhibits methane oxidation by competing for MMO.
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For nitrous oxide.
Nitrous oxide can be produced during denitrification and nitrification. 
In anaerobic condition, denitrifying bacteria produce nitrous oxide during the reduction of nitrate or nitrite. 
In aerobic condition, nitrifying bacteria will release nitrous oxide during the oxidization from ammonium to nitrate.


DATA SELECTION
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Then go for further work to estimate the magnitude and direction of nitrogen effects.
First of all, they try to select the data.


Consumpbinsider FOTAL-ecosystem fRieduction
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Consumption may be offset by production, even within the same ecosystem. Then considering the total ecosystem flux must be extremely important. Nitrogen enrichment affects microbial activities equally. So the net effect on the net GHG budget depends on local environment.
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since that, in this paper, the authors use the method of meta-analysis to analyze the changes of GHG flux from nitrogen addition in several terrestrial ecosystems. 


DATA SELECTION

@® observation

109 publications

313 observations
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Finally, 313 observations from 109 publications were selected for their analysis.


1) Ecosystem type;

2) The level of N loading;

3) Chemical form of N addition;
4) Experimental condition
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They divided them into 4 categorical groups in the following analysis. Researchers want to  investigate whether the direction and magnitude if GHG flux differs by these 4 factors.



DATA SELECTION

@® parameters
* NEE——net ecosystem CO2 exchange (non-forest natural ecosystems)
* EC ——ecosystem C content (forest ecosystems)
+ SOC— —soll organic carbon (agricultural ecosystems)
* CH4 emission
* CHa uptake
* N20 emission
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For these data, the researchers chose 6 response variables, 3 to evaluate the effect of nitrogen on ecosystem carbon budget.
The analysis on NEE is limited to non-forest ecosystems.
EC is defined as the sum of carbon content of vegetation, forest floor and soil for forest ecosystems.
SOC can be used to estimate C content change in agricultural ecosystems.
The effect on N addition on methane emission or uptake are used to evaluate the changes in methane source or sink.
As for nitrous oxide, only emission is estimated because of the lack of publications.


META-ANALYSIS
METHODS




VARIABLES:

® Response ratio
® \/ariance
® Heterogenelty

® Emission/uptake factor (F)
® GeQ
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And then, they chose 5 variables to analyze their data statistically.


META-ANALYSIS

® Response ratio

r = Xr/X.
/T/\

Treatment mean Control mean
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Response ratio r is used to estimate the effect size for each individual observation.


META-ANALYSIS

® variance
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Variance is used to evaluate the fluctuation.
In this equal, SDc refers to control standard deviation,SDt refers to treatment standard deviation.
Nc refers to control replication number, Xc refers to control mean.
Nt refers to treatment replication number and Xt refers to treatment mean.


META-ANALYSIS
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For each categorical group of each response variable, total heterogeneity among group can be divided into within group heterogeneity and between group heterogeneity. 
A significance of Qb indicates that the response ratios are different for the levels of this group.


EMISSION/UPTAKE FACTOR

® Emission/uptake factor (F)
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Nitrogen addition-induced emission /uptake factor is estimated for variables which were significantly influenced by nitrogen addition.
In this equal, GN is annual flux of GHG from fertilized treatment;
GC is annual flux of GHG from control ;
N is annual nitrogen input. 
F of specific GHG can be used to estimate the changes in GHG flux on global scale.


GLOBAL BIOGENIC GHG
BUDGET ESTIMATION

® Changesin GHG flux on global scale (Geq)

Weight
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global warming potential

Global surface area


プレゼンター
プレゼンテーションのノート
Geq were calculated in units of carbon dioxide equivalents by this equal.
L is the level of nitrogen addition. For non-agricultural ecosystems, L is the average nitrogen deposition level, which is 3.5 kilogram nitrogen per hectare per year. And for agricultural ecosystem, L is nitrogen deposition plus fertilizer application.
F is obtained from the last equal.
S is the global surface area of the ecosystem
E is the weight conversion factor for CO2-C, N2O-N and CH4-C for CO2, N2O and CH4.
GWP is 1,296 and 23 for CO2, N2O and CH4respectively.


RESULTS



プレゼンター
プレゼンテーションのノート
Finally move to the results.


UX
greenhouse gas budget
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Their results are shown in 4 aspects.


® 1.Cbalance

Effect of N addition
on NEE, EC and SOC

Response variable n R 95% CI
NEE of non-forest natural ecosystem
Overall 16 0.90 0.73-1.12
Grassland 7 0.95 0.64—1.40
Wetland 6 0.84 0.53-1.32
Tundra 3 0.91 0.35-2.38
EC of forest ecosystem
Overall 17 1.06 1.01-1.12
Coniferous 8 1.07 1.00-1.17
Deciduous 9 1.04 0.97-1.11
SOC of agriculture ecosystem
Overall 18 1.02 1.00-1.05

n, no. observations; R, the mean response ratio; 95% CI, 95%

confident intervals.

Table 2
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First, carbon balance.
Data is shown in this table. N is the umber of observations. R is the mean response ratio. 95% CI is confident intervals.
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Overall, nitrogen addition had no significant effect on NEE for non-forest natural ecosystems.
But it applied to forest ecosystems fro 6-15 years increased EC by an average of 6%. Additionally, EC of coniferous forests showed higher response to nitrogen addition than deciduous forests.
Nitrogen addition applied to agricultural fields for 4059 years increased SOC by an average of 2%.
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Second methane flux
Figure 2 shows the effects of nitrogen addition on biogenic methane emission.
Horizontal axis shows the observation numbers and vertical axis shows the response ratio. The dot with error bars shows the overall mean response ratio with 95% confidence interval.
This response ratio didn’t differ from these 3 types, nitrogen addition, nitrogen chemical form and experimental condition.
It means that the these 3 factors have no significant effects on methane emission.
Nitrogen addition significantly increase methane emission by an average of 95%, fro grassland, wetland and anaerobic agricultural systems.
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Figure 3 shows the effect of nitrogen addition on methane uptake.
In this figure we can see methane uptake was significantly reduced by an average of 38%.
Methane uptake was significantly reduced by NH 4 NO 3 ,ammonium, nitrate and urea.
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Third nitrous oxide
Figure 4 shows the effects if nitrogen addition on biogenic nitrous oxide emission. The increase is 216% on average.
When we focus on different categorical groups. 
We can see that (1)the tropical forests emitted more nitrous oxide compared to other ecosystems; (2)nitrate shows stronger stimulation compared to other nitrogen fertilizer. (3)And low nitrogen addition rate under 55 contributes to lower nitrous oxide emission.
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Nitrogen deposition > ?
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Since nitrogen deposition will increase the concentration of nitrogen. Researchers want to know whether this kind of change will influence the nitrous oxide emission.
They collected data of 32 ovservations to make a diagram.
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And the figure shows the relationship between nitrogen deposition and nitrous oxide emission, no significant relationship.


®)

Table 4 Estimates of net changes in global biogenic greenhouse gases (GHG) flux caused by N enrichment

ODd greem @cu;Scengna/Sx 2L ge N ha ™" year™" per 1 kg N ha™" year™)

COu-C CH,-C uptake CH,4-C emission N,O-N

Forest —24.5 + 8.7 0.017 £ 0.005 0 0.006 £ 0.0(x
Grassland 0 0 0 0.006 £ 0.0(0
Wetland 0 0 0.008 * U.()(M@ 0.036 £ 0.0
Crop -0.53 £ 0:1 0.012 £ 0.006 0.008 = 0.004¢ 0.009 £ 0.00n

Area (10° ha)§ factor (Pg C ()2 per year)'!‘

Fore » 41.6 -1.31 £ 046 0.098 £ 0.028 0.041 £ 0.0(
Grassland 42.6 0 0 0 0.041 £ 0.0«
Wetland 12.8 0 0 0.014 = 0.00 0.075 + 0.0
Crop 13.5 —0.31 £ 0.06 0.055 + 0.027¢ 0.004 = 0.00;% 0.631 = 0.0
Sum -1.61 £ 0.35 0.153 = 0.056 0.018 £ 0.009 0.788 £ 0.1

L J LIL | L J \ sLF —_— Be - . j—

enrichment

% CO, uptake offset by N,O and 53-76%
GH, emission
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Forth, the global GHG budget.
This table is a summary of net changes in greenhouse gas flux.
These two marks refer to not sufficient data for wetland.
Here (1)0 stands for “no significant effect”, (2)positive values refer to GHG emission, and (3)negative values refer to GHG uptake. 
The first part is about the values of GHG emission/uptake factors for different types of ecosystems.
And the second part refers to the carbon dioxide emission estimated from above factors.
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Overall, they take a summary of all the estimations of nitrogen effects on global biogenic GHG budget and list them in table 5.
This table compares carbon dioxide uptake, methane uptake and emission, and nitrous oxide emission.



® N addition increased global terrestrial COz2 sink.
Carbon dioxide then decreased.

® N addition also increases global CHa emission,
reduce CHa4 uptake and increase N20 emission.

® CO2reduction could be largely offset by 53-76%

from multiple ecosystems.
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N addition increased global terrestrial CO2 sink. Carbon dioxide then decreased. 
However, this reduction could be largely offset by 53–76%. Because N addition also increases global CH4 emission ,reduce CH4 uptake and increase N2O emission.
 


perspective:

1. only terrestrial ecosystem

2. not consider spatial complexity of N deposition &
consequential heterogeneity of ecosystem response

3. limited empirical data for many regions and ecosystems
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Additionally, there are some shortages about their work.
First, they only focused on terrestrial ecosystems, 
Second, they haven’t considered spatial complexity of nitrogen deposition and consequential heterogeneity of ecosystem response.
Third, for many regions and ecosystems, the empirical data is really limited.


What | learned from this paper?

methodological> M Eta -dNa IySiS

The benefits:

large amount of observations contribute to more general and reliable results;
review the previous experiments and conclude their differences;

The limitations:

avoid artificial errors—careful selection
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