101217 稲田昼ゼミ

Nighttime exposure to ozone reduces whole-plant production in *Betula pendula*

Rainer Matyssek Tree Physiology(1995)

Contents

- 1. Introduction
- 2 . Materials and methods
- 3. Result
- 4. Discussion

1. Introduction

…の前に・・・

0. Basic knowledge about O₃

- Tropospheric O₃ increases in the Northern Hemisphere recently
- O₃ causes adverse effect on plants (visible leaf injury, growth decline, changing allocation...)
- O_3 may be one of the cause of forest decline
- Researches have been started from 1970s in Europe

1. Introduction

- O₃ can limit tree development in controlled experiments with young plants (Reich 1987)
- Critical level of O_3 exposure (CL) is required

CL: No adverse effect are assumed to occur in plants (UNECE 1988)

• CL needs to be defined for the time period

1. Introduction

- Forest can experience high O₃ concentration in the evening and early morning.
- It has not been determined whether O₃ sensitive periods are restricted to daylight time for trees

To determine whether trees are sensitive to O_3 during the night analyzed the influence of nighttime exposure

1. Introduction

- The capacity of stomata to open without light stimulation may favored...
 - 1. under <u>warm and humid condition</u>
 - 2. depend on <u>leaf age</u>
 - 3. be caused <u>by sluggishness in stomatal</u> regulation under O₃ stress
- To distinguish among these possibilities with
- an examination of leaf gas exchange

2. Materials and Methods

- Betula pendura clone
- 1990 4/17~9/27
- Each grew in field fumigation chambers (5/17~)
- O₃ concentration

(5 plants/ treatment, 1 plant/ chamber)

 O_3 free-air (Control) : about 0ppb nighttime regime : 75ppb 19:00~7:00 daylight regime : 75ppb 7:00~19:00 24h regime : 75ppb all day

① Macroscopic leaf injury

- Visible symptoms of O₃-induced leaf injury
- Classified "Class1" or "Class 4"
 Class 1 : Early symptoms

 (light-green dots spread over the leaf lamina)
 Class 4 : Premature leaf loss

(Gunthardt-Goerg et al. 1993)

These were examined in early and late June, early August and mid-September

- 1990 9/27 5 trees in each treatment were harvested
- Leaves, branches, stem, root, initially planted cutting ... after dry, were weight

③ Measurement of leaf gas exchange (another experiment)

- In 1992 measurements were conducted with the same birch clone
- O_3 regime (7:00~21:00 90ppb, the rest 40ppb)
- O_3 uptake rate was calculated according to the water vapor surrogate method (Laisk et al. 1989)
- Subject leaves
 - ① 4-week-old leaf, August, control
 - (2) 7-week-old leaf, September, O_3 exposure

• Stomatal conductance for $O_3 (g_{O_3})$ DH₂O / DO₃ = 1.68

(The ratio of the diffusion coefficients)

 External O₃ dose (µ11⁻¹ h): concentration of the ambient air multiplied by the duration of exposure

3. Result ~① leaf injury~

Leaves developing in summer have higher tolerance than leaves developing in spring to higher O_3 dose

3. Result ~1) leaf injury~

Tolerance to O_3 : daylight & nighttime < 24h regime

3. Result ~1) leaf injury~

Daylight O_3 regime : didn't lose by early June Nighttime O_3 regime : didn't lose

3. Result
2 Biomass analysis~
Nighttime and Daylight :
Whole-plant foliage area
didn't change

Mainly foliage area
of stem decrease
Whole-plant foliage area
decrease

3. Result ~2 Biomass analysis~

 O_3 effect : whole-plant biomass production > foliage area Stem production was reduced (with increasing external O_3 dose

O3 sensitivity (biomass production and carbon allocation) : nighttime > daylight

4. Discussion

• Nighttime exposure to O₃

➡ leaf injury, limited biomass production, decreased root/shoot rate (R/S)

impeded assimilate translotation?

(Gunthardt-Goerg et al. 1993)

同化産物の転流の遅期化

○₃の順化

may cause acclimation to O_3

repair and detoxification > allocated to roots 修復と解毒

- Birch stomata remained open at night
- It has also been observed in spruce (Wieser and Havranek 1993), and herbaceous plants (Aben et al. 1989)

The 24h information may be basis for defining critical O_3 exposure

4. Discussion

- O_3 sensitivity : nighttime > 24h
- the absence of light may render plants susceptible to O_3 stress 光の欠如が O_3 ストレスに敏感にしやすい?

The enhance sensitivity at night didn't reflect the reduction of leaf area and leaf injure

夜間に○₃に敏感になるのは葉面積の
 減少と傷害の出現には関係ない

The amount and appearance of foliage were not coupled with a decline in photosynthesis capacity 葉の量や出現は光合成能力と一緒には起こらない

Tropospheric O_3 concentration can remain enhanced during night or continuously elevated...

(NAPAP 1991)

For defining critical exposure for O_3 in trees, a daily time of 24h is justified