Help me identify tree species!

造林学 B4 小林 壱徳久

Play with Tensorflow

- Tensorflow is deep learning system
 Google developed, which is used in AlphaGo
- It is available for free

I tried to make computer identify tree species using this system

What is deep learning?

For example, in face recognition

Material&Method(1)

- I chose 6 species to identify
 - ハルニレ (Ulmus davidiana var. japonica) シラカンバ (Betula platyphylla) カツラ (Cercidiphyllum japonicum) エゾヤマザクラ(Cerasus sargentii) サトザクラ (cherry blossoms for cultivar) モミジバスズカケノキ (Platanus x acerifolia)
- 4 samples set up per species
- All samples are in Sapporo campus

Material&Method(2)

- I took 4 pictures of bark per sample
- randomly trimmed a picture and got 10 patterns per picture
- So 160 patterns per species provided

Material&Method(3)

 All patterns are divided into two data, TRAIN_DATA and TEST_DATA

TRAIN_DATA(768 pattens): Computer learns from this data

TEST_DATA(192 pattens): used to evaluate accuracy of model Computer produced

This step is very important to evaluate model exactly (Questions in exam should not be the same ones in textbook)

Material&Method(4)

- When learning, computer randomly pick up 100 patterns from TRAIN_DATA and optimize parameters of model
- This step are repeated 500 times

Result(1)

This graph shows accuracy of model applying to TRAIN_DATA

Result(2)

- Accuracy of model applying to TEST_DATA is 84.02%
- Too low for practical use
- In each species:

68.75%

- 87.50% ハルニレ (Ulmus davidiana var. japonica)
 - シラカンバ (Betula platyphylla)
- 94.11% カツラ (Cercidiphyllum japonicum)
- 90.62% エゾヤマザクラ(Cerasus sargentii)
- 93.75% サトザクラ (cherry blossoms for cultivar) 68.75% モミジバスズカケノキ (*Platanus x acerifolia*)

Application idea

For more accuracy

- Collect more samples
- Use bigger images
- Combine with other information
 - -leaf shape

-where a picture is taken (using GPS) \rightarrow reduce possible species

Application in our field

 Assume distribution of species from aerial photographs

 Identify mycorrhizal fungi and automatically count them

• With drone?

What Tensorflow does?

(you can sleep now)

- Just matrix calculation
- A pattern is 48 \times 48 pixels, so input data is represented by 2304-dimension vector(x_i)
- Output data is 6-dimension(6 species) vector(y_i), whose element shows probability of input data being each species.
- Simplest model as follow

where A has 6 rows and 2304 columns

Tensorflow tries to find best matrix A by which inferred species match true species

How to find best matrix A

- Just like regression analysis
- Defining error function between inferred and true species
- In each learning step, Tensorflow changes parameters of A slightly as reducing the value of error function

By the way

- If $y_1 = 2.1x_1 + 3.4x_2 + 0x_3 = 1$ computer thinks x_3 is useless to identify y_1
- As computer learns patterns, computer is getting good at selecting useful information from input

Neuron network

- This phenomena is similar to Neurons in brain
- So deep learning is expected to be possible way to make Artificial Intelligence
- Don't worry about losing our jobs! (there still are many problems to make AI)