6. Landscape controls of CH₄ fluxes in a catchment of the forest tundra at the lower Yenissej

Heiner Flessa¹⁾, Andrej Rodionov²⁾, and Georg Guggenberger²⁾

¹⁾Institute of Soil Science and Forest Nutrition, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany, ²⁾Institute for Soil Science and Plant Nutrition, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany, e-mail: hflessa@gwdg.de

Abstract

Soils of boreal ecosystems store an essential part of the total terrestrial carbon pool and they affect atmospheric methane concentration by net-CH₄ exchange. Climate warming will have a great impact on carbon storage and CH₄ production in high-latitude soils, especially in areas where melting of permafrost is induced. Permafrost soils can act as a sink for atmospheric CH₄ but they can also show CH₄ emission. The seasonal thaw depth, the dynamics of soil moisture as well as the amount, composition, and bioavailability of organic matter stored in permafrost soils are important factors determining the net-fluxes of CH₄ at the soil surface. The knowledge how climate warming will change these factors and how these changes will influence the emission of CH₄ is of decisive importance for the prediction of the future role of these ecosystems in the global CH₄ cycle. The objectives of our study are i) to determine the variability of net-CH₄ fluxes in a small catchment of the forest tundra in Siberia, ii) to analyze the bioavailability and potential trace gas emission of soil organic matter stored in this area.

CH₄ fluxes were measured in summer and autumn 2003 using the soil cover method. Nearly all soils of the catchment showed a net-CH₄ uptake with flux rates between 10 and 60 μ g CH₄ m⁻² h⁻¹. CH₄ uptake rates were larger for soils without permafrost than for permafrost soils. The estimated mean CH₄ uptake was 1.5 kg CH₄ ha⁻¹ a⁻¹ for soils with a seasonal thaw depth > 90 cm and 0.5 to 1.0 kg CH₄ ha⁻¹ a⁻¹ for soils with an active layer < 90 cm. Large CH₄ emission (3 mg CH₄ m⁻² h⁻¹) occurred from thermokarst ponds induced by permafrost degradation. The results show that permafrost distribution and the depth of the active layer are important controls of CH₄ fluxes and they suggest that the ongoing formation of thermokarst ponds changed the area from sink to a source of atmospheric CH₄. Large stocks of organic carbon were found in the soils of the catchment (8 to 320 kg C m⁻² down to a depth of 2 m). The major part of this carbon was located in the frozen subsoils. Our incubation studies reveal that these old, frozen C stocks will become bioavailable after thawing. Thus, they may fuel CH₄ emission if they are decomposed under anoxic conditions in thermokarst ponds.