2. Greenhouse gas emissions from a Siberian Alas ecosystem near Yakutsk, Russia

Fumiaki Takakai¹, Alexey R. Desyatkin² Larry Lopez³, Ryusuke Hatano^{1,4}, Alexander N. Fedorov⁵ and Roman V. Desyatkin²

 ¹ Graduate School of Agriculture, Hokkaido University
² Institute for Biological Problems of Cryolithozone, SB, RAS
³ Institute of Low Temperature Science, Hokkaido University
⁴ Field Science Center for Northern Biosphere, Hokkaido University, ⁵ Permafrost institute, SB RAS

Abstract

Alas is a circular grassland area with a pond at the center, formed by subsidence associated with permafrost thawing in Taiga forests in the eastern Siberia. Temporal measurements of GHG (CO₂, CH₄ and N₂O) were carried out in the Alas ecosystem near Yakutsk, Russia ($62^{\circ}N$, $129^{\circ}E$) from June to September 2004. A transect line was set up from the forest to the pond through the grassland. Six sampling sites were set up for various vegetation type along the transect: Larch forest (F), dry grassland (G-1 and G-2), wet grassland (G-3 and P-1; the temporarily flooded grassland) and pond (P-2; continuous flooded). GHG fluxes were measured by a closed chamber method, for two treatments (with and without plants) in each site except for forest and pond site (F and P-2 were only measured without plant). In dry and wet grassland sites, relationships between soil temperature and total ecosystem respiration, PAR and gross photosynthesis were made. Net ecosystem exchange of CO₂ (NEE) was estimated by the continuous measurements of soil temperature and PAR. Cumulative CH₄ and N₂O emissions during the measurement period were also calculated.

The cumulative NEE in dry grassland site showed a emission (1159 to 2037 kg C ha⁻¹, positive value indicates emission to the atmosphere) and in wet grassland showed both emission and uptake (-931 to 156 kg C ha⁻¹). CH₄ (cumulative value, Unit: kg C ha⁻¹) uptake constantly occurred in the forest (-0.13). Both CH₄ uptake and emission occurred in individual measurements, however, cumulative flux was the low uptake (-0.1 to -(0.04) in dry grassland. CH₄ emission from the water surface of the pond (238) showed a maximum value in the beginning of July, and then decreased gradually. In wet grassland (17 to 174), high CH₄ emissions were found during the flooding period. In this period, CH₄ emissions via plant body accounted for 52 to 78% of the total emission. After flooded water disappeared, CH₄ emission decreased immediately. A positive relationship between flooding period and total CH₄ emission were found in wet area (temporal or consistently flooding zone). Both uptake and emission of N₂O (cumulative value, Unit: kg N ha⁻¹) occurred in individual measurements, however, cumulative flux was the low emission (0.01) in the forest. A low N₂O emission was found (0.04 to 0.05)in dry grassland. While, N₂O uptake (-0.02) constantly occurred on the water surface of the pond. In wet grassland (0.16 to 1.7), N₂O emission didn't occur as same as in the pond. However, after the flooded water disappeared, a peak of N₂O emission was found. Our results showed that the vegetation zone around the pond was the important sources of CH₄ and N₂O, and was possibly the sink of CO₂. These results also indicated that the soil moisture condition, especially water flooding, could be an important controlling factor of GHG dynamics in the Alas ecosystem.