Next-generation sequencing (NGS) for plant research

Presented by Daisuke Tsugama

Email: tsugama@res.agr.hokudai.ac.jp
Tel: 011-706-2471
Room: S268 (Lab of Crop Physiology)
Slides used for this class can be downloaded at http://www.agr.hokudai.ac.jp/botagr/sakusei/ materials.html

This class ...

- Introduces theories and applications of NGS, which is now very popular in plant research, from an experimental biologist's viewpoint
- Aims at letting you know
 - ✓ what is NGS
 - ✓ what is usually done in NGS data analysis
 - ✓ applications of NGS
 - ✓ NGS is not something to fear
- Assesses you on the basis of a small test attached to the end of the handout

Outline

1. What is NGS like?

- Sequencers for NGS
- Basics of NGS data analysis

2. Applications of NGS

- RNA-Seq
- Genome sequencing
- RAD-Seq
- MutMap and QTL-Seq
- Others

Outline

1. What is NGS like?

- Sequencers for NGS
- Basics of NGS data analysis

2. Applications of NGS

- RNA-Seq
- Genome sequencing
- RAD-Seq
- MutMap and QTL-Seq
- Others

Sequencers for NGS

Sequencer	Company	Output	Read length
GS-FLX	454 Life Sciences (Roche)	~400 Mb	~500 b
Ion Proton	Life Technologies (Thermo)	~10 Gb	~200 b
HiSeq 2500	Illumina	~1 Tb	~200 b
PacBio RS II	Pacific Biosciences	~1 Gb	~40 kb

* Output (b / run) = read length (b/read) \times # of reads

Illumina HiSeq 2000 (https://en.wikipedia.org/wiki/Massive_parallel_sequencing#/media/File:HiSeq_2000.JPG)

Sequencers for NGS

Sequencer	Company	Output	Read length
GS-FLX	454 Life Sciences (Roche)	~400 Mb	~500 b
Ion Proton	Life Technologies (Thermo)	~10 Gb	~200 b
HiSeq 2500	Illumina	~1 Tb	~200 b
PacBio RS II	Pacific Biosciences	~1 Gb	~40 kb

HiSeq and PacBio have been gaining popularity

Glass flow cell covered with primers for the bridge PCR

• Single-end read: obtained by only one primer

• Paired-end read: obtained by two primers

Multiplex analysis: uses more than two indexes
 Sample A-derived read
 Sample B-derived read
 Sample C-derived read

PacBio NGS technology

The detector detects only fluorescent signals retained longer than 1 msec on the bottom (around the DNA pol) of the well

NGS data analysis

Run NGS to get reads Assemble reads into contigs Map reads to a reference *Reference: a genome, transcripts, obtained contigs etc. **Evaluate mapping results** for further analyses

NGS data analysis – read data

Read data are often handled in the fastq format

@MachineX:1:1:1#0/1
TNAGCTTTACGTATAGGCCCCCGAT
+
#!1508<iO{TRkol&389M|aR~y</pre>

@MachineX:1:1:1:2#0/1
ATTGCGTTGTAAGTTGGGGGCCTCTC
+

(usually a great number of reads follow)

Information for the read "MachineX:1:1: 1:1#0/1"

Information for the read "MachineX:1:1: 1:2#0/1"

NGS data analysis – assembly

ACTAGAAGCTTTAGGGAGTTGCCAAGTAAGCACTAGACAGCTGACTTATTCG

Contig

An assembly requires a lot of memory (e.g., *de novo* assembly for an ~3 Gb genome requires ~150 GB memory)

NGS data analysis – mapping

Mapping: associating each read with a reference

— Read — Reference

Reference:

- Known genome
- Known transcripts
- Contigs obtained by *de novo* assembly

NGS data analysis – mapping

Mapping: associating each read with a reference

Read counts for each region (or fragment) of the reference are often used to interpret the data

Outline

1. What is NGS like?

- Sequencers for NGS
- Basics of NGS data analysis

2. Applications of NGS

- RNA-Seq
- Genome sequencing
- RAD-Seq
- MutMap and QTL-Seq
- Others

21

- Is a transcriptome analysis using NGS
- Flow:

RNA extraction \rightarrow mRNA purification \rightarrow mRNA shearing \rightarrow cDNA synthesis \rightarrow NGS

- Each contig derived from a *de novo* assembly corresponds to each kind of transcripts
- Expression levels of the transcripts are evaluated with FPKM, RPKM or TPM
- They are usually used for further analyses such as clustering and a GO analysis

• FPKM:

22

fragments per kb of exon per million mapped fragments

- RPKM: reads per kb of exon per million mapped fragments
 - *FPKM = RPKM when reads are all single-end

$$\frac{RA \times 10^9}{N \times LA}$$

RA = # of reads mapped to A N = total # of mapped reads LA = size of A

• TPM: transcripts per million

TPM of the contig A =
$$\left(\frac{RA}{LA}\right) / \Sigma \left(\frac{Ri}{L_i}\right) \times 10^6$$

R_A = # of reads mapped to A L_A = size of A

TPM is like

The copy number of mRNA of interest / The total copy number of mRNA

24

	Sample 1 (N = 66)			Samp	Sample 2 (N = 66)		
Rx	22	22	22	22	10	34	
							_
Contig	А	B	С	A	B	С	_
(gene)							
Lx	321	230	428	321	230	428	

	Sample 1 (N = 66)			Sample 2 (N = 66)			
Rx	22	22	22	22	10	34	
			<u> </u>		_		
Contig	А	B	С	 А	B	С	
(gene)							
Lx	321	230	428	321	230	428	

Genome sequencing

- Is sequencing a genome with NGS
- >30 × coverage is usually recommended
 E.g., for the human genome (~3 Gb), getting
 >90 Gb reads is preferable
- \$2000 / 90 Gb if HiSeq X Ten is used
- \$1000 / 1 Gb if PacBio RS II is used
- Plant genomes in general have large intergenic regions with many repetitive sequences
 - → PacBio RS II has advantages over HiSeq X Ten if budget is sufficient

RAD-Seq

27

RAD-Seq: restriction site-associated DNA sequencing

RAD-Seq

Benefits

- Regions in the vicinity of the restriction sites can be deeply (again and again) sequenced (thus accuracy is good)
- SNPs (single nucleotide polymorphisms) can be detected on a genome-wide scale
 - *Regions sequenced by RAD-Seq is said to be 0.1-1% of the whole genome

If an 8 b-recognizing restriction enzyme and single-end sequencing are used, the expected coverage would be: 100 \times 100 / 4⁸ = 10000 / 65536 = 0.152... (%)

- Many samples can be handled in each run using indexes
- RAD-Seq was used for developing GWAS with sorghum etc.

GWAS: genome-wide association study

Assessment of phenotypes of various cultivars

	CV1	CV2	CV3	CV4	CV5	•••
SNP1	А	А	А	А	А	_
SNP2	Т	Т	С	Т	Т	
SNP3	G	G	G	G	G	
SNP4	С	С	А	А	С	
SNP5	С	С	С	С	С	
:						

Detection of the SNPs associated with the phenotype of interest

MutMap

30

Was developed to accelerate gene mapping

QTL-Seq

31

Was developed to accelerate QTL analysis

Others (not really for plant research)

Exome sequencing:

targets genomic regions corresponding to exons

- Amplicon-Seq: targets PCR products to find rare SNPs in genetic disease-causing genes or to analyze microbiota (communities of microorganisms)
- Whole genome bisulfite sequencing: targets genomic DNA treated with bisulfite ion, which converts unmethylated cytosine to uracil

How target DNA is prepared is important!

Summary

33

- Sequencers of Illumina and PacBio are often used for NGS
- Illumina sequencers output numerous short reads
- PacBio sequencers output very long reads
- It is necessary to generate contigs by *de novo* assembly if an appropriate reference is unavailable
- Mapping is often performed in NGS data analysis
- RNA-Seq and genome sequencing are the simplest yet the most useful applications of NGS
- It matters how to prepare or enrich target DNA

References

- Illumina sequencing technology: http://www.illumina.com/content/dam/illumina-marketing/ documents/products/illumina_sequencing_introduction.pdf
- PacBio sequencing technology: Rhoads A, Au KF (2015) PacBio Sequencing and Its Applications. Genomics Proteomics Bioinformatics. 13(5):278-289
- MutMap:

Abe A et al. (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol. 30(2):174-178

• QTL-Seq:

Takagi et al. (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 74(1):174-183.

Questions

- It may be difficult to get a whole-genome sequence of a plant without any reference using an Illumina sequencer. Why?
- 2. In what situation(s), is RAD-Seq better than whole genome sequencing?
- 3. In RNA-Seq using model species, genome sequences are more often used as a reference for mapping than mRNA sequences. Why?
- 4. What would you like to do with NGS?
- 5. Any suggestions and/or comments?