Publications

Cahyaningtyas, A., Ezawa, T. Disturbance tolerance of arbuscular mycorrhizal fungi: characterization of life-history strategies along a disturbance gradient in a coastal dune ecosystem. Plant Soil 495: 535-549. https://doi.org/10.1007/s11104-023-06337-4

Ezawa, T., Silvestri, A., Maruyama, H., Tawaraya, K., Suzuki, M., Duan, Y., Turina, M., Lanfranco, L. (2023) Structurally distinct mitoviruses: are they an ancestral lineage of the Mitoviridae exclusive to arbuscular mycorrhizal fungi (Glomeromycotina)? mBio 14: e00240-00223. doi: 10.1128/mbio.00240-23

Salomon, M.J., Watts-Williams, S.J., McLaughlin, M.J., Bücking, H., Singh, B.K., Hutter, I., Schneider, C., Martin, F., Vosatka, M., Guo, L.D., Ezawa, T., Saito, M., Declerck, S., Zhu, Y.G., Bowles, T., Abbott, L.K., Smith, F.A., Cavagnaro, T.R., van der Heijden, M.G.A. (2022) Establishing a quality management framework for commercial inoculants containing arbuscular mycorrhizal fungi. iScience 104636. https://www.sciencedirect.com/science/article/pii/S2589004222009087

Sugimura, Y., Kawahara, A., Maruyama, H. and Ezawa, T. (2022) Cross-ecosystem transcriptomics identifies distinct genetic modules for nutrient acquisition in maize. Front. Plant Sci. 13: 903539 https://www.frontiersin.org/articles/10.3389/fpls.2022.903539/full

Tanaka, S., Hashimoto, K., Kobayashi, Y., Yano, K., Maeda, T., Kameoka, H., Ezawa, T., Saito, K., Akiyama, K., Kawaguchi, M. (2022) Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications Biology 5: 43. https://doi.org/10.1038/s42003-021-02967-5 Sato, T., Niwa, R., Ezawa, T., Sato, S., Hirakawa, H., Yoshida, S., Cheng, W., Tawaraya, K. (2021) Tracking an introduced arbuscular mycorrhizal fungus in Allium fistulosum in a field condition with or without controlling indigenous fungi by soil fumigation as well as evaluation on plant phosphorus and growth. J. Soil Sci. Plant Nutri. 21: 2781-2790. https://link.springer.com/article/10.1007/s42729-021-00565-2

Cuc, N.T., Ezawa, T., Saito, K. (2022) Polyphosphate polymerizing and depolymerizing activity of VTC4 protein in an arbuscular mycorrhizal fungus. Soil Science and Plant Nutrition. https://doi.org/10.1080/00380768.2022.2029220

Pérez-Castiñeira, J.R., Docampo, R., Ezawa, T., Serrano, A. (2021) Editorial: Pyrophosphates and polyphosphates in plants and microorganisms. Front. Plant Sci. 12: 449, https://www.frontiersin.org/article/10.3389/fpls.2021.653416

Maeda, T., Kobayashi, Y., Nakagawa, T., Ezawa, T., Yamaguchi, K., Bino, T., Nishimoto, Y., Shigenobu, S., Kawaguchi, M. (2020) Conservation and host-specific expression of non-tandemly repeated heterogenous ribosome RNA gene in arbuscular mycorrhizal fungi. bioRxiv, https://doi.org/10.1101/2020.05.14.095489

Ezawa, T., Maruyama, H., Kikuchi, Y., Yokoyama, K., Masuta, C. (2020) Application of virus-induced gene silencing to arbuscular mycorrhizal fungi. In: Ferrol N, Lanfranco L eds. Arbuscular mycorrhizal fungi, Methods in Molecular Biology, 2146: 249-254, Springer New York. https://doi.org/10.1007/978-1-0716-0603-2_19

Sato, T,. Hachiya, S., Inamura, N., Ezawa, T., Cheng, W. and Tawaraya, K. (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza 29: 599-605. https://doi.org/10.1007/s00572-019-00923-0

Kameoka, H., Tsutsui, I., Saito, K., Kikuchi, Y., Handa, Y., Yamaguchi, K., Shigenobu, S., Ezawa, T., Hayashi, H., Kawaguchi, M. and Akiyama, K. (2019) Fatty acids stimulate sporulation in arbuscular mycorrhizal fungi. Nature Microbiol., 4, 1654-1660. doi:10.1038/s41564-019-0485-7
Ryan, M.H., Kaur, P., Nazeri, N.K., Clode, P.L., Keeble-Gagnère, G., Doolette, A.L., Smernik, R.J., van Aken, O., Nicol, D., Maruyama, H., Ezawa, T., Lambers, H., Millar, A.H. and Appels, R. (2019) Globular structures in roots accumulate phosphorus to extremely high concentrations following phosphorus addition. Plant Cell Environ. 42: 1987-2002.

Atunnisa, R. and Ezawa, T. (2019) Nestedness in arbuscular mycorrhizal fungal communities in a volcanic ecosystem: Selection of disturbance-tolerant fungi along an elevation gradient. Microbes and Environments. 34: 327-333. (Open access)

Ezawa, T. and Saito, K. (2018) How do arbuscular mycorrhizal fungi handle phosphate? New insights into fine-tuning of phosphate metabolism. New Phytol. 220: 1116-1121 (Free Access) ---Selected as a New phytologist TOP DOWNLOADED PAPER 2018-2019

Kobayashi, Y., Maeda, T., Yamaguchi, K., Kameoka, H., Tanaka, S., Ezawa, T., Shigenobu, S., Kawaguchi, M. (2018) The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 19: 465. (Open access)

Hayashi, M., Niwa, R., Urashima, Y., Suga, Y., Sato, S., Hirakawa, H., Yoshida, S., Ezawa, T. and Karasawa, T. (2018) Inoculum effect of arbuscular mycorrhizal fungi on soybeans grown in long-term bare-fallowed field with low phosphate availability. Soil Sci. Plant Nutri. 64: 306-311.

*Niwa, R., *Koyama, T., Sato, T., Adachi, K., Tawaraya, K., Sato, S., Hirakawa, H., Yoshida, S. and Ezawa, T. (2018) Dissection of niche competition between introduced and indigenous arbuscular mycorrhizal fungi with respect to soybean yield responses. Sci. Rep. 8, 7419. doi: 10.1038/s41598-018-25701-4 *These authors contributed equally to this work. -->PDF file

Ezawa, T. and Saito, K. How do arbuscular mycorrhizal fungi handle phosphate? New insights into fine-tuning of phosphate metabolism. New Phytologist. doi: 10.1111/nph.15187 (Free Access)

Matsuoka, J., Ishizuna, F., Kurumisawa, K., Morohashi, K., Ogawa, T., Hidaka, M., Saito, K., Ezawa, T. and Aono, T. (2017) Stringent expression control of pathogenic R-body production in legume symbiont Azorhizobium caulinodans. mBio 8, e00715-17. doi: 10.1128/mBio.00715-17.

Matsuoka, J., Ishizuna, F., Kurumisawa, K., Morohashi, K., Ogawa, T., Hidaka, M., Saito, K., Ezawa, T. and Aono, T. (2017) A putative TetR-type transcription factor AZC_3265 from the legume symbiont Azorhizobium caulinodans represses the production of R-bodies that are toxic to eukaryotic cells. Soil Sci. Plant Nutri. 63, 452-459. doi: 10.1080/00380768.2017.1371571.

Kawahara, A., An, G-H., Miyakawa, S., Sonoda, J., and Ezawa, T. (2017) How special do you have to be to live in acidic soil? Environmental Science Journal for Teens. (edited from Kawahara et al. 2016. PLoS ONE) -->PDF file

Ezawa, T., Tani, C., Hijikata, N. and Kikuchi, Y. (2016) Inorganic polyphosphates in mycorrhiza. In: T. Kulakovskaya ed., Biological Function of Polyphosphates in Eukaryotic Cells. pp. 49-60, Springer International Publishing, ISBN 9783319410715, Online ISBN: 9783319410739, doi: 10.1007/978-3-319-41073-9_4

Saito, K. and Ezawa, T. (2016) Phosphorus metabolism and transport in arbuscular mycorrhizal symbiosis. In: F. Martin ed., Molecular Mycorrhizal Symbiosis. pp. 197-216, John Wiley & Sons, ISBN 9781118951415, Online ISBN: 9781118951446, doi: 10.1002/9781118951446.ch12

Kawahara, A., An, G-H., Miyakawa, S., Sonoda, J., Ezawa, T. (2016) Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: Acid-tolerant fungi are pH generalists. PLoS ONE 11: e0165035. doi: 10.1371/journal.pone.0165035 -->PDF file

Kikuchi, Y., Hijikata, N., Ohtomo, R., Handa, Y., Kawaguchi, M., Saito, K., Masuta, C. and Ezawa, T. (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol. 211: 1202-1208. doi: 10.1111/nph.14016

*See commentary by Bitterlich & Franken (2016) New Phytol. 211: 1147-1149. doi: 10.1111/nph.14104



Yoneyama, K., Arakawa, R., Ishimoto, K., Kim, H.-I., Kisugi, T., Xie, X., Nomura, T., Kanampiu, F., Yokota, T., Ezawa, T. and Yoneyama, K. (2015) Difference in Striga-susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytol. 206: 983-989. doi: 10.1111/nph.13375. -->PDF file

Sato, T., Ezawa, T., Cheng, W. and Tawaraya, K. (2015) Release of acid phosphatase from extraradical hyphae of arbuscular mycorrhizal fungus Rhizophagus clarus. Soil Sci. Plant Nutri. 61: 269-274. doi: 10.1080/00380768.2014.993298

Kobae, Y., Kawachi, M., Saito, K., Kikuchi, Y., Ezawa, T., Maeshima, M., Hata, S. and Fujiwara, T. (2015) Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza 25: 411-417. doi: 10.1007/s00572-014-0623-2

Yoneyama, K., Kisugi, T., Xie, X., Arakawa, R., Ezawa, T., Nomura, T. and Yoneyama, K. (2015) Shoot-derived signals other than auxin are involved in systemic regulation of strigolactone production in roots. Planta, 241: 687-698. doi: 10.1007/s00425-014-2208-x.

Ezawa, T., Ikeda, Y., Shimura, H. and Masuta, C. (2015) Detection and characterization of mycoviruses in arbuscular mycorrhizal fungi by deep-sequencing. In: I. Uyeda and C. Masuta eds. Plant Virology Protocols, Methods in Molecular Biology, 1236: 171-180, Springer, New York. https://doi.org/10.1007/978-1-4939-1743-3_13

Kikuchi, Y., Hijikata, N., Yokoyama, K., Ohtomo, R., Handa, Y., Kawaguchi, M., Saito, K., and Ezawa, T. (2014) Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and -equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol. 204: 638-649. doi: 10.1111/nph.12937. -->PDF file

Kitahara, R., Ikeda, Y., Shimura, H., Masuta, C., and Ezawa, T. (2014) A unique mitovirus from Glomeromycota, the phylum of arbuscular mycorrhizal fungi. Arch. Virol. 159: 2157-2160. doi: 10.1007/s00705-014-1999-1. -->PDF file

Kawahara, A. and Ezawa, T. (2013) Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem. Oecologia 173: 533–543. -->PDF file

Cheng, Y., Ishimoto, K., Kuriyama, Y., Osaki, M., Ezawa, T. (2013) Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant Soil 365: 397-407.-->PDF file

Ikeda, Y., Shimura, H., Kitahara, R., Masuta, C. and Ezawa, T. (2012) A novel virus-like double-stranded RNA in an obligate biotroph arbuscular mycorrhizal fungus: a hidden player in mycorrhizal symbiosis. Mol. Plant-Microbe Interact. 25: 1005-1012. -->PDF file

Niwa, R., Kawahara, A., Murakami, H., Tanaka, S. and Ezawa, T. (2011) Complete structure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of large subunit rDNA. Protist 162: 423-434. -->PDF file

Hijikata, N., Murase, M., Tani, C., Ohtomo, R., Osaki, M. and Ezawa, T. (2010) Polyphosphate has a central role in the rapid and massive accumulation of phosphorus in extraradical mycelium of an arbuscular mycorrhizal fungus. New Phytol. 186: 285-289. -->PDF file

An, G.-H., Kobayashi, S. Enoki, H., Sonobe, K., Muraki, M., Karasawa, T. and Ezawa, T. (2010) How does arbuscular mycorrhizal colonization vary with host plant genotype? An example based on maize (Zea mays) germplasms. Plant Soil 327: 441-453.

Tani, C., Ohtomo, R., Osaki, M., Kuga, Y. and Ezawa, T. (2009) ATP-dependent but proton gradient-independent polyphosphate-synthesizing activity in extraradical hyphae of an arbuscular mycorrhizal fungus. Appl.  Environ. Microbiol. 75: 7044-7050. -->PDF file

Chen, Z., Watanabe, T., Shinano, T., Ezawa, T., Wasaki, J., Kimura, K., Osaki, M. and Zhu, Y-G. (2009) Element interconnections in Lotus japonicus: a systematic study of the effects of elements additions on different natural variants. Soil Sci. Plant Nutri. 55: 91-101.

Hossain M.M., Tani C., Suzuki T., Taguchi F., Ezawa T. and Ichinose Y. (2008) Polyphosphate kinase is essential for swarming motility, tolerance to environmental stresses, and virulence in Pseudomonas syringae pv. tabaci 6605. Physiol. Mol. Plant Pathol. 72: 122-127.

An, G-H., Miyakawa, S., Kawahara, A., Osaki, M. and Ezawa, T. (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci. Plant Nutr. 54: 517–528. -->PDF file

Maki, T., Nomachi, M., Yoshida, S. and Ezawa, T. (2008) Plant symbiotic microorganisms in acid sulfate soil: significance in the growth of pioneer plants. Plant Soil 310: 55–65. -->PDF file

Niwa, R., Nomura, Y., Osaki, M. and Ezawa, T. (2008) Suppression of clubroot disease under neutral pH caused by inhibition of spore germination of Plasmodiophora brassicae in the rhizosphere. Plant Pathol. 57: 445-452. -->PDF file

Niwa, R., Kumei, T., Nomura, Y., Yoshida, S., Osaki, M. and Ezawa, T. (2007) Increase in soil pH due to Ca-rich organic matter application causes suppression of the clubroot disease of crucifers. Soil Biol. Biochem. 39: 778-785. -->PDF file

Ezawa, T., Hayatsu, M. and Saito, M. (2005) A new hypothesis on the strategy for acquisition of phosphorus in arbuscular mycorrhiza: up-regulation of secreted acid phosphatase gene in the host plant. Mol. Plant-Microbe Interact. 18: 1046-1053. -->PDF file

Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M. and Ezawa, T. (2004) Quantification of polyphosphtate: different sensitivity between enzymatic and colorimetric methods to detect short-chain polyphosphate as revealed by ion chromatography. Anal. Biochem. 328: 139-146. -->PDF file

Ezawa, T., Cavagnaro, T.R., Smith, S.E., Smith, F.A. and Ohtomo, R. (2003) Rapid accumulation of polyphosphate in extraradical hyphae of arbuscular mycorrhizal fungus as revealed by histochemistry and a polyphosphate kinase/luciferase system. New Phytol. 161: 387-392. -->PDF file

Ezawa, T., Smith, S.E. and Smith, F.A. (2002) P metabolism and transport in AM fungi. Plant Soil 244: 221-230. -->PDF file

Uetake, Y., Kojima, T., Ezawa, T. and Saito, M. (2002) Extensive tubular vacuole system in an arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol.154: 761-768.

Ezawa, T., Yamamoto, K. and Yoshida, S. (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci. Plant Nutri. 48: 897-900.

Ezawa, T., Smith, S.E. and Smith, F.A. (2001) Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol. 149: 555-563. -->PDF file

Ezawa, T., Smith, S.E. and Smith, F.A. (2001) Enzyme activity involved in glucose phosphorylation in two arbuscular mycorrhizal fungi: indication that polyphosphate is not the main phosphagen. Soil Biol. Biochem. 33: 1279-1281.

Ezawa, T., Yamamoto, K. and Yoshida, S. (2000) Species composition and spore density of indigenous vesicular-arbuscular mycorrhizal fungi under different P-fertility as revealed by soybean trap culture. Soil Sci. Plant Nutr. 46: 291-297.

Solaiman, M.Z., Ezawa, T., Kojima, T. and Saito, M. (1999) Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl. Environ. Microbiol. 65: 5604-5606.

Ezawa, T., Kuwahara, S., Sakamoto, K., Yoshida, T. and Saito, M. (1999) Specific inhibitor and substrate specificity of alkaline phosphatase expressed in the symbiotic phase of the arbuscular mycorrhizal fungus, Glomus etunicatum. Mycologia 91: 636-641. -->PDF file

Ezawa, T., Saito, M. and Yoshida, T. (1995) Comparison of phosphatase localization in the intraradical hyphae of arbuscular mycorrhizal fungi, Glomus spp. and Gigaspora spp. Plant Soil 176: 57-63.

Ezawa, T. and Yoshida, T. (1994) Acid phosphatase specific to arbuscular mycorrhizal infection in marigold and possible role in symbiosis. Soil Sci. Plant Nutr. 40: 655-665.

Ezawa, T. and Yoshida, T. (1994) Characterization of phosphatase in marigold roots infected with vesicular-arbuscular mycorrhizal fungi. Soil Sci. Plant Nutr. 40: 255-264.