Study on the Preparation and Functional Properties of Rapeseed Protein

GUO Lulu1, DONG Xuyan1, MA Liang3, ZHENG Boping3, JIANG Wenlong3, WEI Fang1, 2, JIANG Mulan1, TANG Mei1, NIU Yanxing1, YANG Mei1, NIU Yanxing1, HUANG Fenghong1, CHEN Hong1, 2*

1, Institute of Oil Crops Research, Chinese Academy of Agricultural Sciences, Wuhan 430062 China;
2, The Key Lab for Genetics and Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062 China;
3, Food Science and Technology Department, Xinan University, Chongqing 400715 China.
Table of Contents

1. Introduction

2. Preparation of Rapeseed Protein

3. Functional Properties of Rapeseed Protein

4. Conclusion

5. The developing and utilization of rapeseed protein
Part 1: Introduction

Increasing world population

Nutrient balance

The land available on the Earth for cultivation is limited.

Global warming and abnormal weather patterns.

Reasons
Rapeseed is one of the most important sources of edible plant oil and animal feed protein in China, also an important bio-energy crop.

China has made remarkable achievements in rapeseed production, and the planting acreage and total output of rape are ranked first in the world. In Hubei, Sichuan, Hunan, and other Yangtze River regions, rape is the second largest crop, exceeded only by rice, which plays a significant role in Chinese agriculture and rural economy.

At present, the production of rapeseed meal has exceeded 700 million tons. With the further development of the rapeseed industry, especially the bio-diesel industry, we can get more rapeseed meal.
Composition of Rapeseed

- Composition:
 - Crude protein (%)
 - Crude fat (%)
 - Crude fiber (%)
 - Crude ash (%)
 - Water
 - Total phosphorus (%)
 - Non-phytate phosphorus (%)
 - Calcium (%)
 - Sinapine (%)
 - Tannin (%)
 - Others

- Composition Values:
 - Crude protein: 23.18%
 - Crude fat: 40.97%
 - Crude fiber: 6.2%
 - Crude ash: 12.9%
 - Water: 1.5%
 - Total phosphorus: 0.63%
 - Non-phytate phosphorus: 1.01%
 - Calcium: 0.63%
 - Sinapine: 0.5%
 - Tannin: 1.83%
Rape seed is increasingly becoming a major crop worldwide. Rapeseed meal contains 35%~45% protein after extracting the oil, the amino acid composition of which is well-balanced in regard to FAO requirements and is rich in sulfur-containing amino acids and lysine, generally the limiting constituent in both legumes and cereals.

Rapeseed protein is a very good complete protein and worth of development, which has great value of utilization.
Rapeseed after oil extraction, a protein-rich meal results and this is usually used for animal feeds or fertilizers.

The crude protein content of soy protein isolate (SPI) in the industrial production can easily reach 90%. Compared with SPI, rapeseed protein had lower crude protein content and poorer color even using the similar preparation process.
Reasons:

1) Compared with SPI, the components of rapeseed protein were more complex, their point and molecular weight had large distribution range. Part of the protein, its isoelectric point reach as high as 11, other protein’s isoelectric point distributed at 4~8.

2) Cellulose content in rapeseed meal was obviously higher than soybean meal, and there were anti-nutrients and toxic substances in rapeseed meal which none in soybean meal.

3) There is big difference in Chemical composition, functional properties, and bioactivities between rapeseed protein and soybean protein.
Low available protein content

Anti-nutrients and toxic substances in rapeseed meal

How to improve Low available protein content?
Part 2: Preparation of Rapeseed Protein

Traditional extracting methods:

1. Aqueous phase method
 Extract the protein in different aqueous phase and then precipitate it near the isoelectric point of rapeseed protein, finally obtain the protein by separation and freeze-drying.

2. Aqueous enzymatic extraction
 Protein is fully extracted using protease from rapeseed meal to improve the yield.

3. Organic solvent method
 Rapeseed protein is extracted using acetone, ethanol, and other organic solvents.

4. Two-phase extraction
 Rapeseed meal is dealt with CaCl$_2$ aqueous solution and dichloroethane, then extracted protein.
Two separation method

Isoelectric point precipitation

Membrane separation technology
Those toxic compounds have significantly lower molecular weights than rapeseed proteins.

Precipitation at controlled pH or separation by ultrafiltration could potentially be used to separate the proteins from those toxic compounds.
Compared with soybean protein, rapeseed protein’s yield rate is generally low using the similar process.

Compared with soybean protein, rapeseed protein shows a wider isoelectric point range on the solubility curve, two or more than two isoelectric point, so adopting the traditional extracting process can’t precipitate the protein completely.
My experiment design and methods

The extraction of rapeseed proteins from double-low rapeseed meal with two methods:

1: alkali-dissolution and acid-deposition
 alkali-dissolution : pH = 11.6
 acid-deposition : pH = 5.8 and pH = 3.6

2: membrane ultrafiltration:
 membrane pore size : MW = 8K
Double-low rapeseed meal

Degreased with ligarine

defatted rapeseed meal

Antioxidants

Alkali extraction
\[\text{pH}=11.6, T = 35^\circ C, t = 45\text{ min} \]

Centrifugal separation

Supernatants

Acid precipitation
\[\text{HCl pH}=3.5, 35^\circ C \]

Centrifugal separation

Supernatants

Vacuum freeze drying

Adjust protein extraction pH = 7

Solid residues

Proteins were precipitated

Ultrafiltration
\[\text{MW} > 10000, 35^\circ C \]

Adjust interception pH = 7

Vacuum freeze drying

Solid residues

Rapeseed isolated protein

Extraction process schematic diagram of rapeseed protein
The protein products

We obtained three types of rapeseed proteins by extraction:

- Alkali-dissolution and pH=5.8 acid-deposition: precipitated protein (RP5.8)
- Alkali-dissolution and pH=3.6 acid-deposition: precipitated protein (RP3.6)
- Ultrafiltration protein: RPs
- Soybean protein: SP
Part 3: Functional Properties of Rapeseed Protein

Rapeseed protein

Different types of protein

Guide and optimize the extraction of rapeseed protein
Effectively actualize the rapeseed protein’s development and utilization

Purpose

- Fractionation by gel filtration sephadex 75
- SDS-PAGE electrophoresis

Physical and chemical property

- Solubility
- Foaming capacity and foaming stability

Functional experiment
Protein Content of rapeseed and soybean protein

<table>
<thead>
<tr>
<th>Protein sample</th>
<th>RPs</th>
<th>RP\textsubscript{5.8}</th>
<th>RP\textsubscript{3.6}</th>
<th>SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein contents(%)</td>
<td>86.31</td>
<td>79.61</td>
<td>70.44</td>
<td>89.56</td>
</tr>
</tbody>
</table>

The crude protein content of rapeseed ultrafiltration protein RPs was higher than precipitated proteins (RP\textsubscript{5.8}, RP\textsubscript{3.6}), by 6.71% and 15.87%. We used the assisted ultrasonic wave during extracted the rapeseed protein, so the precipitated proteins contents was higher than that in the reported literature by 8.31%. (Guo 2001)
The molecular weight distribution scope of ultrafiltration protein is wide, distributed mainly in 16~70KDa, the protein concentration in scope of 16~25 KDa and 65~100 KDa is higher than precipitated proteins RP5.8 and RP3.6. RP5.8 mainly distributed at 18~25 KDa and 32~47.5 KDa, RP3.6 was at 16~25KDa. The soybean protein concentration was higher than rapeseed protein, mainly distributed at 16.5~83KDa.
Solubility

Fig. 3 BSA Protein concentration standard curve

Fig. 4. Dissolution curve of rapeseed protein
The content of ultrafiltration rapeseed protein (RPs) was 86.31% and this protein dissolved completely when pH=10.8.

The solubility of precipitated proteins RP3.6 was worse when pH<10, almost less than 0.2mg/ml.

The solubility of ultrafiltration rapeseed protein RPs was better than soybean protein. The solubility of soybean protein was lowest at pH=4.5~5 while rapeseed protein had a wide isoelectric point interval.

This maybe the mainly reason for that the crude protein content of rapeseed ultrafiltration protein RPs was higher than precipitated proteins (RP5.8, RP3.6) by alkali-dissolution and acid-deposition extraction.
Fig. 5. Foaming capacity and foaming stability comparison of rapeseed protein and soybean protein
1 Foaming capacity 2 Foaming stability
The foaming capacity and foaming stability of precipitated proteins RP5.8 were best, reaching 50% and 60.53%. Those were superior to soybean protein, maybe affected by surface viscosity. The lower surface viscosity of rapeseed protein was is suitable for forming the foam and provide theoretical basis for rapeseed as food additive.
Sephadex chromatography of rapeseed protein

Gel chromatography is a separation and purification technology, it can separate the sample into few fractions based on different molecular weight. The composition of rapeseed proteins were complex, for example ultrafiltration rapeseed protein can obtain three fractions by purification and separation on Sephadex G-75 chromatogram.
Fig 6. Gel chromatogram of three types of proteins, (A) the RPs; (B) RP5.8; (C) RP3.6.
Part 4: Conclusion

we used assisted ultrasonic wave alkali-dissolution and acid-deposition method and ultrafiltration method to extract the rapeseed protein, and obtained three types of rapeseed protein RPs, RP5.8, RP3.6.

1) The ultrafiltration rapeseed protein RPs had higher crude protein contents and better solubility for scavenging low molecular toxic substance.
2) The contents of precipitated proteins RP5.8 and RP3.6 extracted by alkali-dissolution and acid-deposition were lower than ultrafiltration rapeseed protein RPs and soybean protein, but its parts of functional properties, such as foaming capacity and foaming stability were superior to soybean protein, so it can be considered as common food additive to use.

3) We will further study the fractions of rapeseed protein in the future work to master more complete properties. Compared with the properties of edible soybean protein, these theories lay a theoretical foundation for effective development and utilization of rapeseed protein.
Patr5: The developing and utilization of rapeseed protein

Rapeseed protein

Animal feed
Active peptide
Protein modified material

Adding in manufacturing of cake and biscuit
Manufacture man-made protein
Applied in protein beverage

Research on rapeseed is also a sustainable science!
Acknowledgements

1 The described study was supported by the research Foundation of the Director General of Oil Crops Research Institute, Chinese Academy of Agricultural Sciences

2 the National High Technology Research and Development Program of China (863 Program: 2007AA10Z328).
Thank you!